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Abstract—With increasing cell density and the heterogeneity
in the network, optimal user-cell association which is a well
known open problem, will become an even more challenging
issue. Contrary to the current studies that address user-cell as-
sociation problem for convectional HetNets with massive MIMO
deployments in HF (high frequencies) ranges, in this paper we
investigate user-cell association problem for dense two-tier net-
works with massive MIMO deployment both at macro and femto-
tier operating in HF and mmWave spectrum, respectively. We
evaluate the performance of four user-cell association algorithms
for massive MIMO deployment in a two-tier network under two
different deployment scenarios: 1) HF-HF (both tiers operating in
HF band) ; 2) HF-mmWave (MBSs operating in HF while FBSs in
mmWave bands. To this end, we model the association problem
in form of a convex network utility maximization problem as
a function of the downlink user throughput. Contrary to the
existing load aware association schemes that preclude the effect
of bandwidth disparity in HF and mmWave bands, we propose a
modified utility function that takes into account the effect of large
bandwidth at mmWave bands. The problem is solvable through
centralized as well as distributed or user centric load aware user
association schemes.

Index Terms—Massive MIMO, mmWave network, HetNet,
user-association schemes, load balancing, proportional fairness

I. INTRODUCTION

Massive MIMO (multiple-input and multiple-output) and
mmWave spectrum utilization have been identified as key en-
abling solutions to achieve orders of magnitude more capacity
as envisioned for 5G. Massive MIMO is a multi-user MIMO
technology where each base station (BS) is equipped with an
array of hundreds of active antenna elements to communicate
with single-antenna user terminals that are far less in number
as compared to the antenna elements at the BS. On the other
hand, given the shortage of available spectrum at traditional
cellular frequencies, mmWave spectrum (30 GHz -300 GHz)
can be utilized to increase the available spectrum by 200
times as compared to presently allocated HF (sub 6 GHz
spectrum) [1] [2]. Furthermore, the smaller wavelengths at
mmWave frequencies enable large antenna arrays and spatial
beamforming techniques [3] which provide array gains to
counter the larger free space attenuation. Due to their smaller
antenna form factors at mmWave frequency, massive MIMO
antenna arrays are a viable deployment option in UDHN

consisting of dense femto base stations (FBSs) tier underlaid
over the relatively sparsely deployed macro base stations
(MBSs) [4] [5].

User-cell association in UDHNs is a well-known problem,
primarily due to the intertwined objective functions, such as
coverage probability optimization [6], sum rate maximization
[7], joint user association and power control [8] and energy
efficiency [9]. The standard Reference Signal Received Power
(RSRP) based user-cell association offers a highly imbalanced
inter-tier load distribution in a massive MIMO UDHN due to
the large array gain in the MBS tier [10]. This consequently
demands incorporation of the load on rate characterization
for both inter and intra-tier offloading problem [11]. With
the advent of mmWave massive MIMO UDHNs, the user-cell
association is further complexified due to: 1) high sensitivity of
the mmWave to static blockages such as buildings, 2) increased
pathloss following the Friss free-space propagation model [12]
and 3) significant disparity in pathloss exponents for LOS and
NLOS scenarios [13].

Recently some promising advanced user-cell association
schemes have been proposed for massive MIMO deployment
in HF spectrum namely centralized subgradient (henceforth
referred as CS) [14] and distributed user-centric [14] (hence-
forth referred as DUC) [14][15]. Given the contrasting beam-
forming designs and channel blockage effects, how well these
association schemes work in a massive MIMO deployment at
mmWave remains a terra incognita. To the best of our knowl-
edge, this paper is a first attempt to investigate throughput per-
formance of the CS and DUC user-cell association algorithms
for massive MIMO delployments at both HF and mmWave.
We also compare these cell association algorithms against
the more standard smallest pathloss (henceforth referred as
SPL) and max rate (henceforth referred as MR) schemes for
a mmWave massive MIMO UDHN. The contributions and
findings of this work can be summarized as follows:
A. Contributions and Organization
• User-cell association in massive MIMO deployments

in mmWave based HetNets requires incorporating the
mmWave specific idiosyncracies of the channel charac-
teristics as well as practical beamforming strategies for
each tier in dense urban environments. We adapt a system
model inspired from [14] such that it allows incorporation978-1-5386-3531-5/17/$31.00 © 2017 IEEE



of mmWave network idiosyncrasies and thus enables
a comparative analysis of the recently proposed cell
association schemes CS and DUC with the traditional
approaches from the non-massive MIMO era.

• Contrary to the user-cell association approach in [14]
which is based on the optimization of bandwidth nor-
malized user throughput, we incorporate the effect of
increased bandwidth available at mmWave spectrum in
the utility function. This enables higher data rates and
consequently higher probability for user off-loading from
MBS to FBS tier.

• We perform a detailed comparative analysis of the four
user-cell association schemes for the mmWave massive
MIMO system and show that CS and DU outperform
the traditional algorithms only when higher bandwidth at
mmWave spectrum is taken into account. This is a new
insight which existing work on cell-association schemes
for HF fails to provide.

• We also evaluate the throughput performance against the
existing HF based massive MIMO UDHN model [14]
to reveal that operating at higher frequency spectrum
(mmWave) enables throughput gains due to higher spec-
trum availability and stronger pathloss degradation of the
interfering signals.

The rest of the paper organization is as follows: in Section
II, we describe the radio propagation model and the user-
cell association mechanism in the mmWave massive MIMO
deployment. Sections III presents the CS and the DUC ap-
proaches for the optimization problem. In Section IV, we
analyze and compare the performance of these algorithms for
the massive MIMO deployment in HF and mmWave spec-
trum. The paper closes with conclusions and future research
directions in Section V.

II. SYSTEM MODEL

A. Radio Environment and Parameters
We consider a two-tier system with MBSs and FBSs

distributed across a 2-dimensional plane and operating in the
HF and mmWave spectrum, respectively. We use j ∈ J =
{MBS1,MBS2, ..,MBSM}U{FBS1, FBS2, .., FBSF }
and k ∈ K = {1, 2, ..,K} to index the BSs (combination of
M MBSs and F FBSs) and users respectively. The users are
assumed to be distributed across the MBS tier foot-prints in
a non-homogenous manner with higher concentration within
specified hotzones. The FBS distribution is modeled using an
independent Poisson Point Process. This work assumes that
all users in the network are served with proportional fairness
(PF) and each user is served by only one BS at a time. The
notations used in this paper are presented in Table I.

Due to sensitivity of wireless channel, particularly at
mmWaves, to physical blockages, we estimate the LOS prob-
ability of an arbitrary user as a function of its distance with
its associated FBS. Using the 3GPP model [16] and LOS ball
model [17] for the HF and mmWave channels in an urban
environment respectively, we estimate PLOS(d) for each user
and assign pathloss exponents αLOS and αNLOS accordingly.

We assume massive MIMO deployment both at MBSs and
FBSs with Aj as the number of antennas and Sj as the data
downlink stream capacity per time slot at any MBS / FBS
j. Using time division multiplexing (TDD), the BSs learn
about the channel coefficients via the pilots transmitted by the
associated users in the uplink. This allows each BS to serve
a set of up to Sj associated UEs using linear zero-forcing
beamforming (LZFBF) and analog beamforming in MBS and
FBS tiers respectively. The beamforming gain is particularly
important for the mmWave channel to offset the free space
pathloss due to higher frequency and blockage effect.

For transmission, we consider OFDMA based scheme
where each user schedules transmissions over contiguous time-
frequency slots, also referred to as resource blocks (RBs) [18].
We use the block-fading channel model that captures the effect
of both large-scale and small-scale fading. gk,j which denotes
the pathloss and shadowing between an arbitrary BS j and
user k is considered constant across all RBs. Because the HF
and mmWave spectrum exhibit varying channel characteristics,
we have distinct small-scale fading models for MBS-user and
FBS-user channels. For the MBS-user link, the small-scale
channel coefficients which are same within every OFDM RB,
but not necessarily same across RBs, are modeled as Rayleigh
fading coefficients. In the case of FBS-user association, the
small-scale channel is modeled by independent Nakagami
fading for each channel with different coefficients NL and
NN for LOS and NLOS links. If hk,j represents the small-
scale fading between a user k and a FBS j, then |hk,j |2 is
a normalized Gamma random variable. However, due to the
effect of channel hardening in massive MIMO systems [19],
we ignore the effect of small scale channel coefficients in our
model, i.e., we consider |hk,j | = 1, ∀ k ∈ K, j ∈ J .

We assume the load of an arbitrary BS j in a given time
slot as the number of users associated with it which can be
denoted by |Kj |. The instantaneous downlink rate for a user
k served by BS j , using the notations in Table 1, is given by
(see [20] for system details)

Rk,j = (1− Q

T
)
Tu
Ts
log2(1 + SINRk,j), (1)

where the SINR with linear zero-forcing beam forming
(LZFBF) at a user k associated with a macro BS j is adapted
from [21] and given for a perfect CSI at j by

SINRk,j =
(
Aj
Sj
−1)g2k,jPj

ηNo+
∑
l∈J,l6=j gk,lPl+

∑
l∈J(q(k)):l6=j(

Al
Sl
−1)g2k,lPl

. (2)

As the number of antennas in mmWave massive MIMO in-
crease, the implementation of digital beamforming techniques
like LZFBF becomes infeasible because of higher power con-
sumption and associated costs [22]. Therefore, using analog
beamforming, the SINR value at a user k associated with a
FBS j is given by [23][20]

SINRk,j =
(
Aj
Sj

)g2k,jPj

ηNo+
∑
l∈J,l6=j Glgk,lPl+

∑
l∈J(q(k)):l6=j(

Al
Sl

)g2k,lPl
, (3)



TABLE I
NOTATION SUMMARY

Notation Description
J,K set of BSs (MBSs, FBSs) and single antenna UEs
Sj number of data streams transmitted by BS j on a given slot
rk throughput of user k
Rk,j instantaneous rate of user k serving by BS j
Aj number of antennas at BS j

Sj/Aj spatial load at BS j
gk,j pathloss and shadowing between BS j and user k
Q number of symbols per slot for uplink pilots
T number of downlink OFDM symbols per time slot
Pj transmit power of BS j
d distance between an arbitrary user its associated BS
B total bandwidth
No noise power
NF noise figure
kb Boltzmann’s constant
TK temperature in degrees Kelvin
|Kj | number of users served by BS j
mik number of migrations observed by user k in i-th iteration
p switching probability

where

Gl =


Al
Sl
, with probability 1√

Al
1

sin2

(
3π

2
√
Al/Sl

) , with probability
(
1− 1√

Al

)
. (4)

In (1), Q is defined as number of symbols per slot for
uplink pilots and T is the total number of OFDM symbol
within each time slot. TuTs is the ratio of useful symbol duration
to the total symbol duration and considered unity without
any loss of generality. In (2) and (3), η ≥ 1, which is the
normalizing factor that guarantees that no BS infringes power
constraints [20]. (4) expresses the relative power radiated by
the interfering BS l in the direction of the user k served by
BS j [23]. Finally, the user throughput is expressed as

rk =
∑
j∈J

Bjαk,jRk,j , ∀ k ∈ K, (5)

where αk,j = Sj/|Kj | ∈ [0, 1] represents the activity fraction
of RBs allocated to user k by the serving BS j. The system
noise power is given by N0 = NF kbTKB.

B. Problem Formulation for Optimal User Cell Association
In the conventional cellular networks, user-cell association

decisions are performed based on RSRP (or RSRQ) levels,
where each user is connected to the BS which offers best
received power without considering the load of BSs. However,
this approach is not optimal, particularly if we consider
heterogeneity in the future wireless networks. A drawback
of this scheme is that even though FBSs are usually located
in areas with higher user densities (hot-zones), users tend to
connect to MBSs with max RSRP association because of their
higher transmit power as compared to FBSs. This calls for an
offloading or load balancing mechanism which forces the users
to associate with lightly loaded FBSs for efficient utilization
of the available RBs.

In massive MIMO systems, the large antenna arrays signifi-
cantly improve the SINR and subsequently instantaneous rates

due to array gains [23]. This motivates the use of max rate
association scheme, in which an arbitrary user k is associated
with BS j based on the achievable downlink rate given by the
product of bandwidth allocated to j and the instantaneous rate
given by (1), i.e Bj ∗Rk,j . It is further shown in [14] that CS
and DUC based user-association schemes outperforms MR in
terms of 5 percentile throughput while MR still achieves higher
average throughput with the associated caveat of imbalanced
inter-tier load distributions. Whether MR still outperform CS
and DUC for mmWave UDHN remains an open question.
As mmWave network exhibits noise-limited behaviour, some
have proposed the SPL model (user k is associated with BS j
based on smallest pathloss; expressions for each scenario are
given in table II) for user-cell association [24]. For the sake
of completeness, we will compare the performance of the CS
(Sections II, III) and DUC (Section III) algorithms with these
baseline association schemes (Section IV).

We assume proportional fairness in the problem formulation
in order to allocate more RBs to users with stronger downlink
channels. In this regard, we assume the utility function as
U(r) =

∑
k logrk. Our load aware throughput maximization

problem is inspired from [14] and manifests a logarithmic util-
ity function adjusted to cater for inter-tier bandwidth disparity
as:

max
α,r

U(r) (6a)

s.t.
rk ≤

∑
j∈Jk

Bjαk,jRk,j , ∀ k ∈ K (6b)∑
k∈K

αk,j ≤ Sj , ∀ j ∈ J (6c)∑
j∈J

αk,j ≤ 1, ∀ k ∈ K (6d)

rk ≥ 0, αk,j ≥ 0. ∀ k ∈ K, j ∈ J. (6e)

The constraint (6c) in the maximization framework limits the
total activities of the users attached to BS j to be within the
downlink data streams Sj . Similarly, constraint (6d) states that
in case of multiple BS associations to a single user, the limit
of the sum of activities of the all the BSs which serve a user
k cannot exceed unity. Note that (6d) makes the problem
(6) different from the classical unique association problem
formulation, in which each user can only be served by one
BS at max. However, the solution of (6) gives a feasible upper
bound benchmark to any user-cell association which enforces
unique association [14]. Finally, constraint (6e) ensures that no
user is suffering from zero throughput, i.e. all admitted users
have positive downlink data rates. The defined user association
problem (6) is known to be convex with the solution providing
an optimally feasible association configuration [12].

III. LOAD AWARE USER-CELL ASSOCIATION SCHEMES

A. Langrangian Dual analysis and Centralized Subgradient
algorithm based solution

For the solution of (6), the Langrangian duality function is
similar, though not identical, to equation 10 in [14] and can
be expressed as



L(α, r,ω,µ, ν) = U(r)−
∑
k

ωk(rk −
∑
j

Bjαk,jRk,j)

−
∑
j

µj(
∑
k

αk,j − Sj)−
∑
k

νj(
∑
j

αk,j − 1), (7)

where r ≥ 0 and α ≥ 0 are the primal variables and ω,µ, ν
are the Lagrange multipliers. The dual function G in (8) is
the maximum of Lagrangian function over α and r and can
be minimized over the feasible set of dual variables to give
the optimal global solution of the convex problem (9).

G(ω,µ, ν) = max
r,α

L(α, r,ω,µ, ν). (8)

minG(ω,µ, ν), s.t. ω,µ, ν ≥ 0. (9)

The optimal solution of the convex problem in (9) that
maximizes the throughput rk is given by 1

min
∑
j

Sjµj +
∑
k

νk −
∑
k

log(min
j
{µj + νk
BjRk,j

}), (10)

where µ, ν ≥ 0. The modified dual problem in (10) is a
convex function of dual variables (µ, ν) since the second
partial derivatives with dual variable µ and ν exists with a non-
negative value [23]. Based on above analysis, the CS solution
for the dual problem in (10) is given as Algorithm 1.

Algorithm 1 Centralized subgradient algorithm
1: Establish some positive initial values for dual variable
vectors µ and ν and fix a sufficient number of iterations imax
and step size ti = a

b+i where a > 0, b > 0.
2: Initialize the association of all users with a serving MBS
/ FBS. Each k ∈ K decides its serving BS j ∈ J on current
dual variables µi and νi according to jik = argmaxj

BjRk,j
µj+νk

.
3: Calculate the number of users attached to the BS j for the
i-th iteration and let it be Ki

j .
4: Update the dual variables µi+1

j and νi+1
k according to the

current values of dual variables for the i-th iteration (µij and
νik) by taking the partial derivative of (10) with respect to µij
and νik respectively according to:
µi+1
j = max((µij + ti(

∑
k∈Kij

(µij + νik)
−1 − Sj)), 0) and

νi+1
k = max((νik + ti((µij + νik)

−1 − 1)), 0).
5: Go to step 2 and continue while i < imax.

Algorithm 1 presents a globally optimal solution for the
convex dual problem (10) where during each iteration, the
dual variables (Step 4) provide association based on the max-
imum throughput for each user (Step 2). However, the results
observed may not be optimally feasible but nearby feasible for
the primal problem (6) because of the distinct characteristic of
the primal problem and limited number of iterations. The dual
variables obtained by subgradient algorithm are nevertheless
known to provide a near optimal solution for the primal
problem [8].

1Due to space limitation, the detailed derivation is omitted and can be
obtained by following the approach in [14].

B. A Game Theoretical Distributed Approach for User-Cell
Association

While CS approach maximizes sum-throughput by solving
the optimization problem in (6), another approach which
provides near optimal performance relies on load aware dis-
tributed decision making for user-cell association [14][25].
In this work, we formulate this distributed user-cell (DUC)
association decision process in a new context, i.e mmWave
massive MIMO. The modified DUC algorithm performs the
association based on the max-throughput, i.e. each user aims
to associate with a BS which maximizes its throughput in
a selfish manner. In contrast to CS, this distributed non-
cooperative game theoretical approach provides a low com-
plexity implementation yet near optimal solution to (6) [14].

Consider a pertinent scenario where each BS is assumed to
be associated with at least Sj users (indicating fully loaded
BSs) in the network. In the DUC approach, a user tends to
change its unique association configuration until there is no
BS which yields better throughput. At this saturation point, all
the users in the network reach an equilibrium point referred as
"Nash equilibrium" (NE). When the scheduler operates in PF
mode, every user uniquely reaches the NE if the distributed
algorithm is performed selfishly [25]. The condition for the
discussed NE using PF can be given by

BjSjRk,j
|Kj |

≥ BlSlRk,l
|Kl|+ 1

, ∀ k ∈ K, ∀ j, l ∈ J, l 6= j. (11)

The DUC user-association algorithm is derived from [25] and
presented as Algorithm 2.

Algorithm 2 User-centric Distributed algorithm
1: Initialize the iteration count and the number of migrations
observed by all users as i = 0 and m = 0 respectively. Fix a
sufficient number of iterations imax and a realistic switching
probability p.
2: Every user k ∈ K updates its BS-association during each
iteration and switches from its current serving BS k to a
different BS l when the following conditions are met:
BlSlRk,l
|Kl|+1 >

BjSjRk,j
|Kj | and rand < p(mik+1).

3: During each iteration i, increment the migration count mik

for each k whenever k migrates from its current BS j to a
different BS l (i.e. when conditions from Step 2 are satisfied).
4: Go to step 2 and continue while i < imax.

It is seen from Algorithm 2 that the increment in the migra-
tion count mik prevents frequent concurrent BS migrations of
a user with an exponential decrease in migration probability
(Step 2).

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the four user-
cell association algorithms for massive MIMO deployment in
a two-tier network under two different deployment scenarios:
1) HF-HF (both tiers operating in HF band) ; 2) HF-mmWave
(MBSs operating in HF while FBSs in mmWave bands. As we
will see in our results, due to the distinct channel properties
of HF and mmWave spectrum, for same user-cell association
schemes, we obtain contrasting gains under different deploy-
ment scenarios.



Fig. 1. Network Layout.

TABLE II
SIMULATION PARAMETERS

Parameter Value
Bandwidth, Carrier 800 MHz

frequency of mmWave FBS 38 GHz
Bandwidth, Carrier 20 MHz

frequency of HF MBS 2 GHz
Simulation area dimensions 900 m x 1800 m

Mean number of users 3000
Q , T 3, 7

NF , TK , kb 7 dB, 290o Kelvin, 1.38x10−23 J/ Kelvin
Two-slope LOS path 22log(d) + 34.02 +Xσ , d < 320m

loss model of HF MBS 40log(d)− 11.02 +Xσ ,320 < d < 5000m
σ = 4 dB

NLOS pathloss model of 39.1log(d) + 19.56 +Xσ
HF MBS σ = 6 dB

Two-slope LOS path 22log(d) + 34.02 +Xσ , d < 120m
loss model of HF FBS 40log(d)− 3.36 +Xσ ,120 < d < 5000m

σ = 3 dB
NLOS pathloss model of 36.7log(d) + 30.53 +Xσ

HF FBS σ = 4 dB
Pathloss model of 20log(4π/λ) + 10αLOS(orNLOS) +Xσ

mmWave FBS LOS: σ = 4.6 dB, αLOS = 1.9
NLOS: σ = 12.3 dB, αNLOS = 3.3

PLOS(d) for FBS min(18/d, 1)(1− e(−
d
36

)) + e(−
d
36

)

PLOS(d) for MBS min(18/d, 1)(1− e(−
d
63

)) + e(−
d
63

)

Transmit power of MBS 46 dBm
and FBS respectively 35 dBm
Aj for MBS, FBS 100, 40
Sj for MBS, FBS 10, 4

user height 1.5 m
BS height FBS: 10 m, MBS: 25m

p 0.1
FBS radius 40 m

No. of realizations 100

A. Network Model
We consider a downlink UDHN consisting of two MBSs

having 100 antennas each with 46 dBm transmit power and
randomly deployed 34 FBSs having 40 antennas each with
35 dBm transmit power in a rectangular region of dimensions
900m x 1800m. The MBSs are placed in the center of two
square areas identifying hot-zones (higher user concentration)
for the non-uniform user distribution in the simulation area.
Each hot-zone contains about 1/3rd of the total user-count
with the spatial distribution varying in each simulation run to
provide more reliable results. The FBS deployment is uniform
throughout the simulation area as shown in the network

snapshot in Fig. 1. The MBSs, FBSs and users are represented
by �, o and + , respectively.

We assume an intra-cell interference free network by allo-
cating a set of 10 orthogonal pilots to be shared amongst the
MBSs whereas the FBSs share a different set of 4 orthogonal
pilots for channel estimation. A detailed list of simulation
parameters is presented in Table II. The pathloss models for
HF range in both MBS and FBS deployments have been taken
from existing 3GPP standards while the mmWave pathloss
model has been inspired from much recent experimental work
[2]. As evident from table II, the signal dispersion for NLOS
at mmWave is much higher as compared to HF range signal.

B. Throughput performance of user-cell association algo-
rithms in mmWave massive MIMO

The throughput performance of the user-cell association al-
gorithms under consideration for the mmWave massive MIMO
UDHN is given in fig. 2. The 5 percentile throughput result
in fig. 2a shows that the modified CS and DUC algorithms
outperform the baseline association schemes. Max rate demon-
strates the worst performance in terms of user throughput.
Results in figs. 2a, 2b and 2c show the performance of CS
and DUC is indistinguishable. In fig. 2d, we compare the
performance of the DUC and SPL by taking the ratio of their
respective throughput statistics and plotting the CDF of the
results obtained in each iteration. Gains are observed for each
of the data rate statistics presented in figs. 2a, 2b and 2c. For
instance, it is seen that for about 60% of the iterations, a gain
of 20% is achieved in the 5 percentile data throughput.

To demonstrate why incorporating the bandwidth during
user-cell association is indispensable for the HF-mmWave sys-
tem considered, consider fig. 3 which depicts the 5 percentile
throughput when spectral efficiency is optimized in the utility
function maximization as done in [14]. It is clear from figs.
2a and 3 that with the effect of bandwidth taken out of
the maximization function, CS and DUC perform worse than
the SPL. This is due to significant SINR reduction specially
for NLOS users that is compensated with higher available
spectrum at mmWave. Hence, our proposed modification in the
optimization function in (6) is justified for our HF-mmWave
massive MIMO UDHN system model.
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Fig. 3. Throughput with spectral efficiency based user-cell association
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Fig. 2. Performance comparison of user-cell association algorithms for mmWave massive MIMO using PF

C. Throughput gain with mmWave deployment at FBS tier
It is interesting to analyze if operating FBS tier at the

mmWave yields any notable throughput gains. While the
throughput gradient (not presented in results due to limited
space) showed that SPL had the largest throughput percentage
increase (approx. 50%) when the operating frequency is shifted
from HF to mmWave, it is clear from fig. 4 that even the
optimal CS and DUC yield 30% increase for almost half of
the realizations. This validates the practical viability of HF-
mmWave co-existence in UDHN massive MIMO systems.

Fig. 4. Comparison of HF-HF versus HF-mmWave network

D. Load Distribution of the user-cell association schemes
Fig.5 presents the count of users associated with the MBSs

and FBSs under three user-cell association schemes. Note that

since CS and DUC give near identical throughput and user-
cell association patterns, we can only use one of these for
analysis. Fig. 5 plots the number of users associated with
each BS in descending order while clearly demarcating the
MBS and FBS tier association. In terms of offloading the
MBSs, the DUC scheme clearly outperforms MR and SPL.
MR association scheme exhibits the worst performance with
highest net loads on the MBS tier. The results in fig. 5b reveal
that DUC offers higher and more balanced user association
with the FBS tier which eventually results in higher system
throughput (see fig.2). While MR and SPL are blind towards
cell loads during user-cell association, the load aware CS and
DUC provide dual benefits of higher user throughput as well
as decongestion of MBS tier by using the per user throughput
as the association criteria.

V. CONCLUSION

In this paper, we present a comparative analysis of four
different user-cell association algorithms for an ultra-dense
multi-tier HetNet with massive MIMO deployment in both
HF and mmWave spectrum. The four user-cell association
algorithms analyzed in this paper include two throughput
optimal schemes namely: 1) centralized sub-gradient (CS)
throughput maximization based association and 2) distributed
user-centric game theoretic (DUC) based association. Though
the basic idea of both CS and DUC is inspired from earlier
work on HF [14] [25], we have extended these ideas to
mmWave by adapting the optimization problem with a modi-
fied utility function to incorporate idiosyncrasies of a mmWave
based network. The benchmark approaches used for analysis
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include: 1) smallest pathloss (SPL) model and 2) max rate
(MR). We investigated different key performance indicators
including 5 percentile throughput, average throughput and
inter-tier load distribution. Results indicate that both CS and
DUC association algorithms outperform the baseline schemes
by virtue of higher throughput and efficient MBS off-loading.
While the DUC association almost matches the performance of
the CS approach, the simplicity in its implementation without
requiring centralized optimization renders it as a suitable
candidate for user-cell association in future mmWave massive
MIMO networks.
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