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Abstract—User-centric network architectures are a key
proponent to enable the uniform Quality of Experience
(QoE) requirement for future dense heterogeneous net-
work (HetNet) deployments. However, catering to spatio-
temporally varying user service demands arising from the
plethora of diverse mobile applications remains a challenge
in such network architectures. In this paper, we propose
a QoE-centric elastic framework for a dense multi-tier
cellular network deployment. The framework leverages the
control and data plane separation architecture (CDSA) for
enabling selective data base station (DBS) activation within
user equipment (UE)-centric virtual cells (also referred
to as service zones). The allocation of these virtually
elastic service zones around selected UEs is conducted
via a central control base station (CBS) and modeled
through two game techniques, namely evolutionary and
auction games. Both the games are based on a utility min-
imization problem which is a function of weighted mean
UE throughput and usage based UE service demands. To
illustrate the trade-offs between the game models, network
level performance is compared in terms of aggregate
throughput, energy efficiency, algorithm convergence speed
and mean UE scheduling probabilities.

Index Terms—User-centric architectures, Control and
Data Plane separation, evolutionary game, auction game

I. INTRODUCTION

Network densification through the use of small cells
is considered a viable solution for meeting the capacity
targets in future cellular networks (i.e. 5G). While
densification is inevitable, it has a couple of major
associated problems that persist as a bottle neck in
network planning: i) high inter-cell interference and
ii) low energy efficiency [1]. Though upcoming 5G
technologies such as massive multiple input multiple
output (MIMO) and millimeter wave (mmWave) of-
fer promising prospects for increased system capacity
[2], they may not address the aforementioned issues.
Redesigning the network orchestration in cell planning
from the traditional base station (BS)-centric to a user
equipment (UE)-centric approach [3] has been recently
envisioned as a first step to address these challenges [4].
This user-centric (UEC) architecture guarantees a higher
energy efficiency (EE) along with location-independent

uniform Quality of Experience (QoE). Analysis in [5]
has shown that the cell density that yields optimal EE
is different than that which yields maximum outage
capacity. In [6], we leverage this analysis to propose
a UEC network deployment solution where an ultra-
dense network is deployed, and is then orchestrated
between EE and area spectral efficiency (ASE) optimal
modes by intelligently switching OFF/ON small cells.
This switching ON and OFF is done by creating non-
overlapping exclusion zones around high priority UEs
within which only one small cell is turned ON during
each scheduling instant. The size of the exclusion zone
is then used as a control parameter to realize the desired
compromise between EE and ASE. However, due to
diversity in mobile data usage trends, a static network
wide optimal exclusion zone size does not offer the
elasticity to optimize individual user’s QoE in different
spatio-temporal zones.

In this paper, we present and introduce a second
tier of elasticity within UEC systems that integrates
non-uniform exclusion zones centered around users.
These non-uniform exclusion zones, which we call as
service zones (S-Zones), cater for data demand disparity
between spatio-temporal zones as well as the diversity
of data requirements from user applications (for instance
HD video streaming v/s whatsapp messaging) within a
single spatio-temporal zone. The basic premise behind
deploying virtual flexible service zones around mobile
users is to control the interference limit that a user can
experience while still getting the throughput sufficient
for its data needs. For instance, high definition real-
time gaming applications will require a high throughput
and low latency communication link, which can be
guaranteed if the signal to interference ratio (SINR)
is sufficiently high. To ensure that, the controller will
assign this user a large service zone to not only assign
it larger number of resources, but also to reduce in-
terference from concurrent downlink transmissions for
other users. The same is true other way round for
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IoT based sensor devices that require low throughput
transmission, and hence a relatively moderate SINR.
Consequently, a smaller service zone would suffice for
their data requirements.

This demand based UEC scheme is an ideal can-
didate for implementation in a control-data separation
architecture (CDSA) [7] where small cells referred to as
data base stations (DBSs) provide data services to UEs
while macro base stations also referred to as control base
stations (CBSs) provide necessary control and signaling.
While CBSs provide the essential coverage, intelligent
activation/de-activation of the DBSs enables potential
for significant energy savings in CDSA. In addition to
this, CDSA can offer better spectral efficiency mainly
because of selection diversity that stems from large
number of DBSs in dense deployments. Centralized co-
ordination at the CBS solves the cell discovery problem
for DBSs in a conventional BS-centric architecture. In
the proposed UEC framework, this allows for turning
DBSs ON/OFF, depending upon an individual UE’s S-
Zone size and the propagation link quality between that
UE and the DBSs within its S-Zone.

The analysis of strategies UEs may adapt while
competing for downlink (DL) resources to meet their
data requirements in a UEC CDSA is the focus of this
paper. To this end, we investigate the application of
game theoretic techniques which have been well known
for resource management and interference mitigation in
dense small cell networks [8] [9]. In particular, we apply
auction and evolutionary game techniques (referred to as
AGT and EGT respectively), with users as game players
adapting strategies to secure DL scheduling within vir-
tually interference free S-Zones. While there has been
significant research in user-centric networks in recent
times [10],[11], to the best of our knowledge, analysis
of second tier elasticity in user-centric CDSA that caters
to non-uniform user demands remains a terra incognita.
This work is a first attempt to analyze the tradeoff of
game theoretic techniques for UE level demand based
CDSA architecture. The contributions and findings of
this work are summarized as follows:
A. Contributions
• The analysis of UE-centric systems with a CDSA

architecture requires incorporating the idiosyn-
crasies of the dynamic activation/de-activation of
DBSs within a two-tier network. We present a sys-
tem model that links the activation of DBSs to user
requirements as well as the level of interference in
the environment surrounding the scheduled users
(Section II-A,B,C,D).

• Contrary to our previous UEC models in [4], [5]
and [6] that were based on static first tier exclusion
zone modelling, this work takes a step further
and incorporates the effect of non-uniform user
demands across and within spatio-temporal zones
(Section II-E).

Fig. 1. S-Zones concept illustration in UE-centric CDSA architectures.

• In order to evaluate mechanisms for integrating
throughput demand disparity in S-Zone assignment,
we perform a detailed comparative analysis using
two game theoretic techniques, namely evolution-
ary game and auction theory (Section III). Both the
games are based on a distributed utility minimiza-
tion problem. The evolutionary game involves itera-
tive action strategy adjustment by the UEs, whereas
the auction game comprises of UEs bidding their
true valuation with the aim of winning the auction
and securing virtual S-Zones for DL scheduling.

• Simulation results are presented for performance
evaluation of the algorithms in terms of aggregate
system throughput, energy efficiency, user schedul-
ing ratio and mean algorithm convergence time
(Section IV). We show that the proposed QoE
based user-centric service zone provisioning yields
better performance as compared to a UE-centric
network with static system-wide service zone area.
Our analysis advocates integration of an intelligent
self-organizing network (SON) engine [12] within
the proposed UEC CDSA network architecture. The
SON engine would optimize a network efficiency
metric by dynamically shifting game strategies with
respect to network dynamics and spatio-temporally
varying operator’s business model.

II. SYSTEM MODEL
A. UE-Centric CDSA Network

Fig. 1 shows a UE-centric based CDSA network
model where users having a high payoff (used inter-
changeably with utility) and scheduling priority are
served by a single DBS providing best channel quality
(e.g. CQI (channel quality indicator) measure) within
their virtual service zones respectively. Each scheduled
UE is the center of an S-Zone with an active DBS.
The remaining DBSs within and outside the S-Zones are
turned OFF to reduce inter-cell interference as well as
lower overall power consumption. The area of S-Zones
around scheduled UEs is adjustable based on individual
UE’s throughput requirements. This two-tier CDSA with
elastic service zone model consists of a central CBS
providing essential control and signaling functionalities



to the UEs while the DBSs serve the UEs with DL
data transmissions. Based on the channel feedback by
the UEs, the CBS allocates S-Zones to scheduled users
based on outcome of game models (Section III) during
each transmission time interval (or TTI).
B. Network Model

Borrowing from well established tools in stochastic
geometry [13], we model the spatial distributions of
DBSs and UEs using two independent stationary Poisson
point processes (SPPPs): ΠDBS ∈ R2 and ΠUE ∈ R2

with intensities λDBS and λUE respectively. Specifically,
at an arbitrary time instant, the probability of finding
ni ∈ N, i ∈ {DBS,UE} DBSs/UEs inside a typical
macro-cell with area foot-print A ⊆ R2 follows the
Poisson law with mean measure Λi(A) = λiv2(A)
[4]. The mean measure is characterized by the average
number of DBSs/UEs per unit area (i.e., λDBS\λUE )
and the Lebesgue measure [13] v2(A) =

∫
A dx on R2,

where if A is a disc of radius r then v2(A) = πr2 is
the area of the disc.
C. Channel Model

The channel between a DBS x ∈ ΠDBS and an
arbitrary UE y ∈ ΠUE is modeled by hxyl(||x − y||).
Here hxy ∼ E(1) is a unit mean exponential ran-
dom variable which captures the impact of a Rayleigh
block-fading channel between x and y. The small-scale
Rayleigh fading is complemented by a large-scale path-
loss modeled by l(||x−y||) = K||x−y||−α power-law
function. ||x− y|| is the Euclidean distance between x
and y, K is a frequency dependent constant and α ≥ 2
is an environment/terrain dependent path-loss exponent.
The fading channel gains are assumed to be mutually
independent and identically distributed (i.i.d.). Without
any loss of generality, we assume K = 1 for the rest of
this discussion. Furthermore, we assume that all DBSs
employ the same transmit power.
D. UE-Centric DBS Scheduling

The first step in DBS scheduling is identification of
high priority users to be scheduled in a given TTI. The
second step is creation of non-overlapping circular S-
Zones centered around each UE selected to be served
in that TTI. The size of the S-Zone is the parameter
of optimization and will be discussed later. Each UE is
then served by a DBS within its S-Zone that provides
strongest received signal power. The remaining DBSs
are switched off. The size of circular S-Zone around a
scheduled UE x is characterized by a variable radius
RSZ,x which is a function of x’s data requirements and
the interference from nearby active DBSs. The CBS is
responsible for control signaling to all the UEs within its
footprints. In addition, the CBS also assigns scheduling
priorities in the form of a mark/tag pUE ∼ U(0, 1) to
each UE. The marked PPP [13] formed as a result of
user-centric scheduling impacts the downlink scheduling
priority of the UEs. More specifically, the lower the

value of the mark, the higher is the priority of the UE
to be scheduled. Effectively, these marks can be thought
of as the timers corresponding to each UE that are
decremented in each time slot where DL service to this
UE is deferred. Based on the channel quality measure
between the DBSs and the UEs, the CBS decides
and activates the relevant DBSs for DL transmission
to the scheduled UEs. The advantages of such UEC
scheduling is two-fold: firstly, due to non-overlapping
S-Zones, the interference experienced by a scheduled
UE is considerably reduced and secondly, on-demand
activation of DBSs provides the network self-organizing
capabilities to cope with spatio-temporal variations in
user demography.

One might argue that such a one-to-one UE-DBS
association within a non overlapping user-centric S-
Zone scheme may result in service holes, i.e. there may
exist UEs that are not associated with any DBSs due
to empty UE-centric S-Zones. Since we are considering
dense small cell deployments with λDBS and λUE of
the same order, UE-centric S-Zones with realistic areas
will hardly be void. In the unlikely scenario of a void
S-zone though, user clustering strategies [14] may be
employed where nearby UEs are grouped together and
optimization is performed on the UE clusters rather
than individual UEs. Furthermore, it is known that best
DBS activation with a proximity constraint provides
dual benefits of low outage probability and high power
efficiency in dense deployment scenarios [15].
E. UE’s payoff function and S-Zone size for Game
formulation

Payoff function: We model the payoff of a UE x
as ux = δ(τ̄ − τx(RSZ,x)) + (1 − δ)(τd,x − τx(RSZ,x));
where τx(RSZ,x) is the achievable data throughput for x,
τ̄ = 1

N

∑N
n=1 τn is the mean achievable user throughput

(considering N active UEs) of the spatio-temporal zone
estimated through a central entity (such as the CBS) and
τd,x is x’s variable throughput demand based on the
application usage. 0 ≤ δ ≤ 1 is a weight priority index,
controllable via CBS, with factor δ enforcing uniform
throughput regardless of service demand disparity while
1 − δ allows users with high scheduling priority to
selfishly meet their data demands at the expense of non-
priority users.

The first component of the payoff measures the utility
of a UE in terms of the penalty (positive / negative)
depending upon how much lesser / greater the UE’s
achievable throughput is to the mean achievable through-
put of all UEs. Similarly, the second component of
the payoff determines the penalty associated with how
deviant the achievable throughput is to the UE’s actual
service based throughput demand at a given S-Zone
radius. Using this novel characterization of payoff, we
can formulate the optimization problem to be solved by
the game models for a UE x’s payoff as a function of
RSZ,x and given as

min
RSZ,x

|δ(τ̄ − τx(RSZ,x)) + (1− δ)(τd,x− τx(RSZ,x))|. (1)



S-Zone radius: The achievable throughput for a UE x
is expressed using Shannon’s theorem as

τx(RSZ,x) = log2(1 + SINR(RSZ,x)), (2)

where the S-Zone size dependent received SINR at x
when served by DBS y can be written as follows:

SINR(RSZ,x) =
maxy∈ΠDBS∩(x,RSZ,x)hxyl(||x− y||)

No +
∑

z∈ΠI
hxzl(||x− z||) . (3)

ΠDBS ∩ (x, RSZ,x) is the thinned PPP representing the
DBSs within the UE-centric virtual circular cell of
area πR2

SZ,x around x, ΠI denotes the thinned PPP of
interfering DBSs, i.e. the active DBSs in S-Zones other
than that centered around x, and No is the variance of
the additive white Gaussian noise at x.

To ensure that the UE-centric S-Zones are within
practical dimensions, we tried several mathematical for-
mulations of RSZ,x as a function of λDBS, λUE and
γx. Drawing insights from extensive simulation based
experiments with different DBS and UE densities, we
propose the following model to characterize the S-Zone
area around a UE x served by a DBS y1:

RSZ,x =
||x− y|| ln(λDBS)

(1− γx) ln(λUE)
, (4)

where 0.1 ≤ γx ≤ 0.9 is the application based variable
UE demand with normal distribution N(0.5, 0.1). The
limits on the UE demand ensures avoiding circumstances
when UEs with extremely high/low service demands
request impractically high/low S-Zone radii.

III. GAME FORMULATIONS FOR UE-CENTRIC
SERVICE ZONE SCHEDULING

We leverage both evolutionary (EG) and auction (AG)
games to determine optimal S-Zone sizes by solving the
optimization problem in (1). Let N={1,2,...,N} denote
the set of UEs participating in each game iteration.
Each UE x demands a certain throughput τd,x, which
is a function of the variable demand variable γx, such
that τd,x ∝ γx. For this work, we consider a linear
relationship, τd,x = Kγx+ε, where ε is the UE specific
noise in the throughput demand. The throughput demand
τd,x in turn determines the S-Zone radius RSZ,x through
iterative update in γx until convergence is achieved for
the utility in (1). The CBS calculates and communicates
τ̄ to every UE within its coverage so that they may adjust
γx with the objective of solving (1).

A. Evolutionary Game

In the context of an evolutionary game for S-Zone
size optimization, each UE adapts its demand strategy
according to the received payoff in (1). This evolution
of the game allows the population states to evolve over
time. For this work, we are considering two UE popu-
lation states: over-served and under-served expressed as

1Note that the formulation for RSZ,x is done for the parameters
considered in Section IV. A different formulation may be required for
suburban and sparsely deployed DBS regions.

UEOS and UEUS respectively. An over-served UE is char-
acterized by a negative utility in (1) indicating surplus
resources in terms of higher achievable throughput as
compared to the mean throughput and/or the application
based throughput demand. The action strategy for over-
served UEs is an adjustment in their S-Zone size through
a prefixed step reduction in γx. Similarly, the under-
served UEs with positive utilities increase their S-Zone
areas through a prefixed step increase in γx, within the
demand constraints (Step 1, Algorithm 1).

The evolutionary game in Algorithm 1 is governed
by principles of replicator dynamics [9], according to
which the number of UEs selecting a particular strategy
will increase if that action yields close to zero payoff.
The frequency for a particular action strategy is given by
Xs = Ns

N . Ns is the number of UEs selecting strategy
s where s ∈ S = {increase γx, reduce γx}.

Algorithm 1 EG algorithm
1: Each UE chooses a throughput demand τd,x based on
the application usage. The disparity in τd,x is modeled
by assuming that the UE demand γx has a normal
distribution, i.e. γx ∼ N(0.5, 0.1), and constraints 0.1 ≤
γx ≤ 0.9. Iteration counter is set to i = 1.
2: Based on the channel gains and γx values, the CBS
calculates RSZ,x, creates virtual S-Zones around high
priority UEs and turns ON a single DBS per S-Zone.
Elaborating mathematically, a UE x is scheduled iff
p
{x}
UE < p

{x′}
UE ;∀x ∈ ΠUE,x

′ ∈ ΠUE ∩ (x, RSZ,x),x′ 6=
x.
3: The scheduled UEs observe SINR(RSZ,x) and sub-
sequently the achievable throughput τx(RSZ,x) which is
sent to the CBS.
4: The CBS calculates τ̄ and broadcasts it to all UEs.
5: Each scheduled UE computes its utility ux and adjusts
γx. If ux > 0, then γx = min(γx+0.05, 0.9); if ux < 0,
then γx = max(γx − 0.05, 0.1); and left unchanged
otherwise.
6: Update p{x}UE , increment i and go to step 2 while i <
imax.

imax is the maximum number of simulation itera-
tions for a given network configuration. The EG based
strategy adaptation algorithm functions in a distributive
manner where each UE adapts its individual strategy
to optimize (1). Additionally, the algorithm relieves the
CBS from centralized optimization computation, making
its implementation scalable throughout the network.

B. Auction Game
Auction theory allows players to intelligently select

their strategies in order to gain maximum resources. For
our work, we adapt the Vickrey Clark Groves (VCG)
auction mechanism which is known for ensuring assur-
ance of truthfulness from the players as well as max-
imization of fairness [16]. Also called the "sealed-bid



second-price auction", this auctioning scheme awards
the bid to the highest bidder who pays an amount
equivalent to the second highest bid. Contrary to the
first price auctions, VCG auctions prevent selfish players
from cheating because bidding the true valuation is
the weakly dominant strategy in this model [17]. This
guarantees that under most general circumstances, VCG
will yield bid winners as players with highest valuations.

In contrast to EG where S-Zone assignment was
dependent upon p

{x}
UE alone, in AG (Algorithm 2), we

integrate the utility ux within the bidders’ (or UEs’)
valuation structure as

bx =
1

p
{x}
UE [δ(τ̄ − τx(RSZ,x)) + (1− δ)(τd,x − τx(RSZ,x))]

.

(5)

As seen from (5), the UEs with optimal utilities are
rewarded with higher bid values. Each iteration in the
AG is a new game as the winners of the conducted
auctions are assigned S-Zones by the CBS and barred
from further bidding. Because we analyze system level
performance metrics, the cost paid by UEs after winning
the bids is irrelevant for this work. However, we employ
a VCG auction due to its relevance to wireless networks
[18]. Moreover, the existing framework can be analyzed
in extensions of this work and include the effect of UE
cost when modeling the network over large number of
TTIs.

Algorithm 2 AG algorithm
Steps 1-4 same as EG algorithm.
5: Each UE participating in the auction calculates its bid
value bx and sends it to the CBS.
6: The CBS chooses a player as the winner of the auction
if its bid is not lower than any other player that can form
a non-overlapping S-Zone with the existing S-Zones, i.e.
a UE x is the auction winner iff bx > bx′ ;∀x,x′ ∈ Π

′

UE,
where Π

′

UE refers to the UEs whose RSZ,x (and RSZ,x′ )
allow non-overlapping S-Zones with past auction win-
ners.
7: The CBS removes the auction winner in current
iteration from future bidding. New bidding round (step
5) continues until there is no new winner.
8: CBS schedules auction winners, updates p{x}UE and i.
Go to step 3 and re-evaluate the metrics for existing
players. Continue until i < imax.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we discuss the simulation results for
a range of efficiency parameters to evaluate the perfor-
mance of the game theoretic techniques in question, i.e.
EGT and AGT within the elastic CDSA framework. The
basic simulation parameters are given in Table 1.

A. Aggregate Throughput performance

The aggregate throughput is calculated numerically
as the sum of the achievable throughput of the served

TABLE I
SIMULATION PARAMETERS

Parameter Value
Simulation area dimensions (|A|) 100 m x 100 m

λUE|A| 400
λDBS|A| 50, 100, 150

α 4
δ 0, 0.25, 0.5, 0.75, 1

Power consumption parameters
Po, Pu, ∆u and Pou 6.8, 1, 4 and 4.3 W

θ 0.5
imax 100

No. of Monte Carlo realizations 1000

UEs within a TTI, i.e. λDBS,Act|A|
∑λDBS,Act|A|

1 τx where
λDBS,Act|A| denotes the number of activated DBSs (or
served UEs) in the network. The results in fig. 2 reveal
contrasting trends with varying δ and DBS densities
under considered game theoretic algorithms. While the
EGT demonstrates reduction in throughput for the range
of DBS densities considered as δ increases, the AGT
shows increasing throughput trends for denser DBS
deployments with an increase in δ. The trends are
disruptive for δ = 1 which is the pure fairness centric
scheduling scheme and takes no consideration of users’
QoE requirements.

As far the deployment density is concerned, EGT
is the superior scheme for λUE/8 DBS density. For
denser networks with mean DBS deployment density
of 3λUE/8, AGT is clearly the preferred game model.
The findings highlight the necessity of a SON imple-
mentation within the CBS for intelligent and dynamic
adaptation of game model as a function of both λDBS
and δ to maximize the system throughput.

Fig. 2. System throughput comparison of EGT and AGT.

B. Energy Efficiency of the UEC CDSA
To estimate the EE of an elastic CDSA under UE-

centric architecture, we take inspiration from the work of
award winning European project EARTH [19] and apply
relevant modifications to construct a power consumption
model for a UE-centric CDSA given as

PCDSA = λDBS,Act|A|(θPo + ∆uPu + Pou), (6)



where Po, Pu and Pou denote fixed power consumption
of an active DBS, transmit power of a UE terminal and
circuit power consumed at UE terminal during discovery
respectively [20]. 0 ≤ θ ≤ 1 is a system deployment
efficiency parameter with θ = 1 capturing least energy
efficient deployment. The power consumption of the
CDSA as seen from (6) is an increasing function of the
DBS density and a decreasing function of the average
UE S-Zone area.

Fig. 3. Energy Efficiency comparison of EGT and AGT.

Although AGT (fig. 3) demonstrates comparable EE
performance for λDBS = λUE/4 and δ ≤ 0.5; for most
of the simulated scenarios, EGT is a clear winner. This
can be attributed to a larger average S-Zone area for the
EGT implementation which reduces the average number
of concurrent DL transmissions and hence more DBSs
are deactivated.

C. Convergence analysis

To analyze the convergence of the algorithms, we
plot the average payoff received by UEs using EGT and
AGT (fig. 4). It can be seen that the system converges
to equilibrium relatively faster with AGT. Particularly
at low DBS densities, for instance at λDBS = λUE/8
in fig. 4b, the mean UE utility converges to 0 almost
instantly. Not only does the AGT outperform EGT in
convergence speed, but also in achieving optimal UE
utility, i.e. by minimizing |ux|. Negative utilities for
EGT indicate UEs receiving sufficiently high SINR
to attain achievable throughputs exceeding the desired
levels needed to optimize (1). The root cause for the
non-ideal UE utility distribution with EGT can be traced
back to UE demand constraints (0.1 ≤ γx ≤ 0.9) which
bars the UEs with high negative utilities to further reduce
the S-Zone size and increase their utility.

D. UE Scheduling success

The expected delay for a UE waiting to be sched-
uled is analyzed by plotting the mean served UE ratio
(λDBS,Act
λUE

) under variable DBS densities and δ values
(fig. 5). The served UE ratio represents the expected
number of scheduled UEs after equilibrium is achieved
for the EGT and AGT games. The smallest wait time

Fig. 4. Convergence of (a) EGT and (b) AGT algorithms for an elastic
UEC CDSA network.

is observed for AGT scheme with λDBS = 3λUE/8
where an arbitrary UE is expected to be re-scheduled
after every 5th or 6th TTI. For λDBS = λUE/8, EGT
marginally outperforms AGT while AGT exhibits higher
scheduling success for δ ≥ 0.5 when λDBS = λUE/4.
The simulation results in fig. 5 once again reiterate the
practicality of a SON engine capable of adjusting δ
and alternating between game models to yield desired
service delay times within UE-centric CDSA.

Fig. 5. UE Scheduling Success probabilities with EGT and AGT
algorithms.

E. Performance Comparison with first tier user-centric
elasticity

Fig. 6 shows the performance gains in terms of aggre-
gate system throughput (fig. 6(a)) and energy efficiency
(fig. 6(b)) for the proposed UE-centric elastic CDSA in
comparison to the uniform user-centric service regions
proposed in earlier works [21]. The network models with
fixed user-centric regions in [21] to maximize ASE and
EE are referred to as FS(ASE) and FS(EE) respectively.
The variable-sized QoE-centric service zones proposed
in this work with EGT and AGT implementations are
referred to as VS(EGT) and VS(AGT) respectively.
Clearly, the proposed model outperforms "one-size fits
all" strategy both in terms of system throughout and
EE by virtue of assigning flexible user-centric service
zones that are appropriately sized to meet an arbitrary
UE’s data requirements. While AGT yields higher data
throughput, particularly at high λDBS, the EGT is more
energy efficient. Once again, this result reiterates the



need for an intelligent SON enabled CBS that can switch
the game models to support a higher data throughout (or
energy efficiency).
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Fig. 6. (a) System throughput and (b) EE comparison of uniform user-
centric [21] and QoE-centric service zone approaches with different
DBS densities.

V. CONCLUSION

In this paper, we presented an elastic cellular network
framework capable of catering to individual UE QoE
requirements. The QoE flexibility is realized through
virtual interference free service zones centered around
scheduled UEs. We proposed a distributed utility mini-
mization problem to model appropriate S-Zone forma-
tions around the UEs. To evaluate the optimization of S-
Zone allotment to UEs, we conducted a detailed compar-
ative analysis using evolutionary and auction based game
implementations at a centralized CBS. We investigated
different key performance indicators including aggre-
gate network throughput, energy efficiency, mean UE
scheduling probability and algorithm convergence speed.
Results indicated that for each efficiency metric, with
variations in DBS density and the priority distribution
between a fair UE throughput network versus a ser-
vice requirement driven throughput network, the game
scheme exhibiting superior performance fluctuates. To
fully optimize a network efficiency parameter, we ad-
vocate a SON enabled CBS that is capable of dynamic
adaptation of game modes to offer higher throughput
or energy savings, whichever is desired by the net-
work operator. Future works include evaluation of the
proposed model at mmWave frequencies and including
the associated signaling costs within the optimization
framework.
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