
 

Distilled Deep Learning based Classification of 
Abnormal Heartbeat Using ECG Data through a Low 

Cost Edge Device  

Morghan Hartmann, Hasan Farooq, Ali Imran 
University of Oklahoma, Tulsa, USA 74135 

Email: {morghan.s.hartmann-1, hasan.farooq, ali.imran}@ou.edu 

Abstract—To meet the accuracy, latency and energy efficiency 
requirements of modern healthcare systems during real-time 
collection and analysis of health data, a distributed edge 
computing environment is the answer, combined with 5G speeds 
and modern AI techniques. Using the state-of-the-art machine 
learning based classification techniques plays a crucial role in 
creating the optimal healthcare system on the edge. This work first 
provides a background on the current and emerging edge 
computing classification techniques for healthcare applications, 
specifically for electrocardiogram (ECG) beat classification. After 
implementing these classification techniques on a Raspberry Pi- 
based platform we perform a comparison of the performance of 
these classification techniques with respect to three key 
performance indicators (KPI) of interest for health care 
applications namely accuracy, energy efficiency, and latency. 
Benefiting from the results of the comparative analysis presented 
in this work, a distilled neural network algorithm can be selected 
for optimal deployment and over 90% accuracy in given scenario 
in healthcare system depending on the specific requirements of the 
given scenario.  
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I. INTRODUCTION  

Artificial intelligence (AI) has become a large research area 
in many industries, and one sector that could benefit the most is 
healthcare. A recent article by Forbes predicts that public and 
private sector investment in healthcare-related AI will reach 
$6.6 billion by 2021, which highlights the potential of AI to 
enable better quality of healthcare [1]. The excess of health-
related data has put a strain on legacy computing used by 
hospitals and industry, but AI has the capacity to process and 
analyze this data faster and more accurately than human 
counterparts. Computationally complex algorithms required for 
healthcare data can be used in a large number of applications 
that help to provide life-saving medical monitoring, especially 
for heart failure and arrhythmia detection [2]. Deep learning 
specifically is an effective tool that can be utilized by the 
medical community, as shown by a large number of studies done 
in this field [3].  

ECG, or Electrocardiogram, is a test that measures electrical 
activity of the heart. According to the American Heart 
Association, the test can identify parts of the heart that have been 
damaged, overworked, or are too large to be healthy [4]. The test 
is routine and harmless, as no electricity is transmitted to the 

body. Creating a portable ECG device can be done by utilizing 
energy efficient computing methods and small devices at the 
edge of the network. Current research in edge computing for 
healthcare focuses on measuring certain KPIs that are important 
for the progression of health services, such as response time, 
energy efficiency, and bandwidth cost. State-of-the-art reserach 
tend to focus on one of the KPIs for a certain portion of the edge 
computing process, so the aim of this work is to increase the 
number of KPIs, which provides a larger picture of best data 
operations techniques for classifying patient ECG data. 
Classification of raw data collected by health sensors is normally 
completed using simple or advanced algorithms, depending on 
the computing power of the device, and is a very common 
research theme in healthcare-related computing.  

II. RELATED WORKS 

The use of machine learning techniques for medical data 
classification on the edge is a common theme of today’s relevant 
research, however, there are a few that focus specifically on 
ECG signal classification. For example, in [5], an Intel mote 
runs K-nearest neighbors (KNN) and radial basis function 
(RBF) algorithms for the analysis of normal and abnormal heart 
beats. The training data consisted of several features extracted 
from the raw data, including the P-Wave, RST-Wave, and T-
Wave offsets. In [6], classification of ECG abnormalities is done 
on a PDA, which are not commonly used today. Nevertheless, 
the reports on classification comparisons are highly detailed, 
which was helpful in the selection of models for this research. 
The most accurate models used in [6] were the decision tree, 
neural network, and nearest neighbor clustering, which all had 
over 91% accuracy. However, the neural network had a training 
time of 2 hours, 10 min and the other two had times of over 5 
minutes. The authors were able to classify 15 beat types from 
the database, in particular, the beats relating to ventricular flutter 
arrhythmia, which is a condition that needs medical attention in 
less than three minutes to avoid fatality. In [7], one-minute 
samples of ECG cycles, with and without arrhythmia, are 
analyzed using Support Vector Machine (SVM) learning. The 
use of this low latency technique, combined with the fog node 
computation in the place of cloud computing, contributes to a 
very low latency device (759 ms delay) that can be deployed in 
an IoT network. The SVM algorithm distinguishes between 
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normal and abnormal heart rhythms based on features from the 
ECG with an accuracy of 93.6%. However, this work uses a 
different source of data, namely the “long-term ST Database” on 
Physiobank. The authors of [8] also use the MIT arrhythmia 
database and show through their work that the use of state-of-
the-art deep neural networks outperforms other models in terms 
of accuracy and specificity.  

This work adds to these previous ones by providing an 
analysis in memory requirements, which is especially important 
for small devices, and latency of runtime, which is another 
requirement for fast medical devices. Selection of a raw data 
input for the classifiers sets this project apart from previous 
works in ECG classification. Previous work uses a large number 
of features, so to test if sparse features can be used, extracted 
sparse raw data from the MIT database is chosen for the input to 
reduce the memory-related constraints as well as storage 
constraints. In addition to showing results for 14 beat types, we 
also extend to abnormal versus normal beats with a focus on 
distinguishing between normal beats and the most urgent beat 
types that need diagnosis quickly (less than three minutes). The 
addition of the distilled neural network in the analysis is a novel 
contribution to ECG edge classification, as it has not been 
evaluated in literature for this use. For a comprehensive diagram 
of this work’s setup, see Figure 1.  

III. ECG DATA BACKGROUND 

A. ECG Data Selection 
The key parts of the ECG are the P, Q, R, and S waves (Fig. 1). 
The features refer to the stimulation and contraction of different 
parts of the heart muscle. The P-Wave is the action of the atria, 
or upper parts of the heart. The QRS Wave refers to the 
ventricles, or the lower parts of the heart contracting. The P 
wave signals the end of the heartbeat and represents the heart 
muscles resetting for another contraction sequence. P interval, 

QRS area, and T interval are common extracted features for the 
classification. Each person has a slightly different normal ECG 
signal, depending on gender, height, and weight, among other 
factors [5]. The problem with ECG data is the large amount of 
data that can be amassed by the sensors, especially if the number 
of leads is increased. Even ECG samples for small periods of 
time can take up megabytes of storage, which is the case for the 
MIT arrhythmia database, which is discussed in the next section. 
Each sample contains 30 minutes of two-lead data, which 
consists of approximately 18 MB. For a small device used on the 
edge of the network with limited computing and storage 
capabilities, this is not an acceptable amount. 

B. ECG Data and Pre-Processing  
There are several publicly available databases to use for 

arrhythmia classification tasks, including those on EDB, AHA, 
CU, and NSD. However, the most popular to use is the MIT 
Arrhythmia Database [9], since it has the best documentation 
and most beat types represented. The MIT Arrhythmia Database 
available on Physiobank contains 48 patient ECG records, each 
30 minutes long. The heartbeats fall into five “super classes” –
normal, supraventricular ectopic beats, ventricular ectopic beats, 
fusion beats, and unknown beats. The beats are further classified 
into 18 distinct types, each represented in the database records 
by a character. Many of the patient files contain more than one 
type of heartbeat. The classification task has two main parts—
model formulation and prediction. The prediction of a beat into 
a particular class relies on a representative model, which comes 
from the input variables. Since these algorithms and datasets 
cannot exceed a certain memory usage amount, limited input 
observations need to be used to ensure this speed and efficiency. 
The input variables in this case are not the raw ECG signals, 
which exceed 15 MB for one patient’s data. Instead, the raw 
signal from the amplitude of the QRS complex is taken from 
each beat type in 40 different patient files. This accounts for only 
160 kB once extracted, which is small enough to be run from a 

Figure 1. Derivation of ECG inputs and classification models 
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small device. The Pre-processing of MIT Arrhythmia Database 
files involved several steps. First, the files were downloaded 
from the Physiobank database for medical signals. The 
annotation files which contain the beat type labels for the 
duration of each patient’s ECG, are separate from the raw signal 
files, which must be merged via an indexing program that takes 
the sample number from each annotation and inserts the label 
for the beat types in the raw signal file. Next, to select the 
features to be used from the data files, a filtering program was 
run to find the amplitude of each QRS complex, along with the 
raw signal information at the amplitude of both leads. These 
selected features were taken from multiple patient files and 
contained samples of 14 different beat types to analyze the 
robustness of the learning algorithms to classify beats for any 
patient.  

IV. MACHING LEARNING MODELS  

A. Multilayer Perceptron (MLP) 
Multilayer perceptron is a form of feedforward neural network, 
which forms a stacked regression model. The backbone of this 
algorithm is backpropagation, which comes from the essential 
knowledge of calculus [10]. MLP has three or more layers: one 
input layer, one output layer, and one or more hidden layers. 
For this work, the best performing MLP model had 3 hidden 
layers with 100 neurons each. The model for this scenario is the 
following: 
 

                                                     (5) 

B. Deep Neural Network (DNN) 
Before the distilled neural network is discussed, it is essential 
to know the basics of a deep neural network. This neural 
network is a linear stack of layers with 8 layers total. These 
layers consist of dense, max pooling, 1-dimensional 
convolution, and activation layers. The models used in this 
work apply weights to inputs and connect this to an output. And 
any input layer for the deep neural network can be represented 
as  
 

                     (7) 

 

Where  is the weights and  represents biases from each of 

the neurons [11]. Neural networks with convolution layers are 
extremely powerful when used in many recognition tasks, and 
produces high accuracy results. 

C. Distilled Deep Neural Network (dDNN) 
As discussed above, the DNN is extremely valuable when 
accuracy is the goal, however, this comes at a cost of high time 
complexity and memory. With low latency and memory 
requirements to satisfy, we evaluated a smaller, more efficient 
model for edge computing use. This new, state-of-the-art 
technique aims to gather essential knowledge from one large 
model or a number of medium-sized models to create a 
“student” or generalized model that is more energy efficient 
than its predecessors. This small size is ideal for a small edge 
device. This student model distills the knowledge from a large 

neural network using logits, which are the inputs to the 
teacher’s final Softmax layer [12]. Figure 1 shows the sequence 
of events when constructing a student model from a teacher 
model. The output of the teacher model’s final layer is taken as 
an input to learn on the data at a fast rate. This in turn is used in 
the place of the Softmax activation layer of the student model. 
A complex neural network, for example, results in a high 
accuracy for data classification, however, it also has a high 
memory requirement, which is not feasible for running on a 
small device at the edge of the network.  
 

V. CLASSIFICATION RESULTS AND DISCUSSION 

 First, we analyzed the KPI that is most often used in other 
works—accuracy. First, the machine learning models were 
trained to classify 14 common beat types in an ECG. Each model 
was then trained to distinguish between the two beat types 
deemed most urgent for treatment versus normal beats. The 
accuracy comparisons are shown in Table 1. For comparison 
with the teacher-trained model, a standalone smaller model was 
created. This standalone model has the same structure as the 
trained student model, except for the activation layer which is 
separate from the teacher model. Thus, this entire model was 
trained independently from the teacher. This enables testing of 
the distillation compared to a similar 4 layer deep neural network 
that is not derived from a teacher. Although the MLP model has 
a relatively high accuracy that compares to the other models, it 
has a high loss, which cannot be overlooked when choosing an 
ideal classification algorithm for an edge device. The student 
model obtained from training on the last layer of the teacher 
model’s logits aims to keep the accuracy at a similar level while 
decreasing the loss and size of the teacher. After decreasing the 
dataset to include only three beat types, the standalone student 
model achieved comparable results to the teacher-trained 
student model, however, the standalone had significant model 
loss as compared to the teacher-trained student model.  Although 
there was a lower runtime involved with the standalone model, 
the accuracy and loss parameters are not as ideal as for the 
trained student model. Each of the classifiers chosen achieve 
similar accuracy results when compared, however, the teacher 
DNN model has a slight edge over the others. This edge comes 
at a cost, since it has a high runtime and the highest memory 
requirement out of all the classifiers.  

 

 

 

 

 

The second metric involved in an ideal edge algorithm selection 
is latency, the results of which are shown in Table 2. The MLP 
has very low training latency, while the deep neural networks 
have higher latency of up to 117 seconds. The trained student 
model takes longer to train since some inputs from the teacher 

 14 beat types 3 beat types 

MLP 62.5 92.1 

Teacher DNN 68.3 94 

Student DNN 65 89 

Standalone DNN 65 90 

Table 1. Accuracy Comparisons (%) 
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are required for the construction of the model, which increases 
the runtime. However, the model loss for the trained student 
model was slightly less than the teacher model. Because of the 
low loss and relatively high accuracy, this technique has the 
optimal traits needed for deployment in a medical edge device 
scenario out of all the deep learning models included. 

The third metric important for deployment on edge devices is 
the low memory requirement, a comparison of which is shown 
in Table 2. Since the MLP method is not a deep learning model, 
it consumes less energy than the deep learning models when 
performed on a dataset. Although the MLP does have a higher 
loss, it is extremely close to the teacher model in this respect and 
uses almost half as less energy as the teacher model. However, 
if a dataset is run on a pre-trained model that can account for a 
variety of beat types in a variety of patients, the model might not 
have to be fitted to each patient’s ECG. Further testing is 
required to test this hypothesis.  

 

VI. CONCLUSION AND FUTURE WORKS 

This work provides the analysis of machine learning 
techniques, including a state-of-the-art method called distilled 
knowledge learning, which uses a large teacher model for 
training a smaller, edge-friendly classifier. The results of the 
analysis proved the usefulness of the distilled neural network, 
which performs with the lowest loss among the classification 
techniques, with only a small drop in accuracy in comparison 
to the large model. These smaller models are legitimate options 
for small devices with a larger number of features and low 
number of ECG beat types, which would help to decrease the 
loss which exists under this work’s conditions. Adding more 
features does require more data pre-processing, which could 
add to the total runtime of the diagnosis program.  
Based on the analysis, it is clear that using sparse data feature 
does limit the accuracy and precision of a system but works 
relatively well when the number of total classes is reduced. If 
more features are added, it is suggested that a smaller model 
such as the MLP is used for deployment in a case where low 
latency is the priority, above accuracy, such as an emergency 
diagnosis scenario. However, when all of the metrics are 
weighed, it is clear that the student model trained on the large 

deep neural network and MLP both have the best tradeoff 
between accuracy, loss, and runtime.  
Future work would include a study on best extracted features to 
use in a low latency scenario. For example, comparing the total 
runtimes of extraction plus the learning algorithm for several 
different features. Adding additional data, such as heart rate or 
blood pressure could also add to the diagnosis aspect of a 
medical system. Another area of research would be to compare 
performance of machine learning algorithms best for specific 
beat types and then create specialty models to then distill into a 
neural network. 
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 Latency (sec.) Memory (MB) 

MLP 4.89 116 

Teacher DNN 117.5 244 

Student DNN 115 229 

Standalone 
DNN 107 244 

Table 2. Latency and Memory Comparisons for 
14 Beat Types 

�������	
���
���
�������������
�	���������
��������������	���������������

1071


