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Abstract—Millimeter wave spectrum utilization and network
densification are two of the fundamental technologies that will
enable high user quality of experience required in 5th Generation
mobile cellular networks. However, user sparsity in ultra-dense
heterogeneous networks and coverage limitations of millimeter
wave cells means reliability of such networks will become a
key operational challenge. Recent studies have explored the use
of machine learning techniques for outage detection in legacy
and heterogeneous mobile cellular networks. However, machine
learning techniques are highly susceptible to noise in the training
data which can affect their outage detection accuracy. To counter
these challenges, we present a novel outage detection method
based on entropy field decomposition technique first introduced
in [1]. The proposed method is able to detect cell outages with at
least 96% accuracy even as the level of shadowing in the network
is increased which makes it ideal for practical implementation
in emerging ultra-dense heterogeneous networks with millimeter
wave cells. The proposed solution is compared against k-means
clustering for outage detection with results showing that not
only does entropy field decomposition return higher true positive
results, it also returns fewer false positive results compared to
k-means clustering.

Index Terms—Heterogeneous Network; Network Reliability;
Millimeter Wave Cells; Entropy Field Decomposition

I. INTRODUCTION

Chief among the requirements for 5th Generation (5G)
mobile cellular networks (MCNs) is the enhancement of
subscriber Quality of Experience (QoE). QoE enhancement
in 5G MCNs is based on a combination of factors including
10x more throughput, less than 1 millisecond latency, and 10x
more battery life than 4th Generation MCNs [2]. To meet
the capacity enhancement component of these requirements,
several solutions have been proposed, with network densifica-
tion [3] and millimeter wave (mmWave) spectrum utilization
[4] among the most popular. It has been demonstrated that a
combination of network densification and mmWave spectrum
deployment could potentially yield exponential increase in
area spectral efficiency [5], thus resolving the capacity crunch
5G MCNs is bound to face.

However, network densification and mmWave spectrum
utilization come with their own limitations. Very low user-
to-cell ratio can lead to cells being sparsely populated, which
makes the performance of ultra-dense heterogeneous networks
(UDHNs) exceedingly difficult to estimate [6]. On the other
hand, mmWave cells are subject to very high pathlosses due
to their operation in 30GHz - 300GHz band. One solution

to reduce the impact of high pathloss in mmWave cells is
the deployment of highly directional antennas with beam-
widths as low as 7◦ [7]. However, this opens mmWave cell
networks to the problem of very large coverage gaps leading
to a decrease in network reliability that must be compensated
by additional antennas per cell compared to traditional macro
cells or by using macro cell overlay [4] adding to network
architecture complexity.

The challenges above highlight the difficulties of ensur-
ing reliable and omnipresent coverage in mmWave-UDHNs.
In state-of-the-art MCNs, identifying and resolving cellular
network outages, which are a consequence of software or
hardware failure of network entities, requires highly trained
engineers parsing gigabytes of network health logs and net-
work performance indicator data to look for these outages.
Due to the continuous growth in cell density and increasing
pressure to reduce operational costs, this approach is quickly
becoming impracticable.

A. Related Work

Given the significance of the problem in maintaining net-
work service reliability, cell outage detection and prediction
has been studied extensively in the last few years. Only a small
subset of studies is discussed here that is representative of the
larger discussion on state-of-the-art in outage detection re-
search. For a more comprehensive review of outage detection
along with outage diagnosis and compensation techniques, the
reader is referred to a recent review paper [8].

In [9] the authors employ local outlier factor (LOF) and
one-class support vector machines (SVM) techniques to detect
coverage anomalies in macro cell environment from the min-
imization of drive test (MDT) reports data [10]. The authors
use the two clustering techniques to separate cells into normal
and anomalous based on their received power measurements,
and use expert analysis to determine the accuracy of anomaly
detection. Using the Receiver Operating Characteristic curves
of the two techniques, the authors demonstrate that one-class
SVM outperforms LOF considerably. In [11] the authors use
handover and radio link failure data to predict network outages
in the network. The authors create a diffusion map of changes
in user associations due to handover and call failure events
and use k-means clustering algorithm to detect the cells with
abnormal changes in user associations.
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The solutions in [9], [11] use spatial data to detect network
outages. However, this limits the observation of outage impact
to spatial domain only. In contrast, studies such as [12]
propose to use temporal cell level performance metric data
such as uplink and downlink throughputs, radio link failures,
and handover failures to detect network outages. In [12]
the authors use SVM and auto-regressive integrated moving
average to identify network anomalies. The authors construct
healthy network performance models using the two techniques
and predict future cell performance data from those models.
If there is a significant deviation between actual and predicted
data, the algorithm determines that the cell is in outage.

A key insight from the studies discussed above is that the
availability of sufficient data for model training and outage
prediction is not a major concern in homogeneous macro cell
networks. However, the same does not hold true for UDHNs,
especially with very high cell density as it results in very small
number of users per cell (< 2 UE/cell) [6]. To address the
training data sparsity challenge, the authors of [13] propose
to generate cell coverage maps from sparse network coverage
data by employing Grey prediction model [14] to interpolate
coverage data between randomly distributed locations of users
sending MDT reports. The authors use this data to detect
anomalies using the predicted user association information
and actual user association information.

Despite the advancements in outage detection described
above, there exist several key issues that need to be addressed
for such solutions to be applicable to mmWave UDHNs:
• Inclusion of Spatio-Temporal Domains: The studies dis-

cussed above either use spatial coverage snapshots taken
at certain time instants or temporal data of a fixed-
location cell for outage detection, thus disregarding the
impact of the outage on subscriber QoE in the other
domain.

• Sensitivity to shadowing: Most of the existing cell out-
age detection solutions are highly sensitive to shadowing.
This is a key observation in [9] where the impact of
shadowing on the accuracy of different outage detection
algorithms is investigated. It is shown that as the stan-
dard deviation of shadowing increases, machine learning
based-outage detection models become less accurate.

• Outage Detection in mmWave-UDHNs: We know that
the likelihood of outages increases with cell density
as well as complexity of the cell hardware [8] which
will be the case in mmWave-UDHNs. However, to the
best of our knowledge, an outage detection solution
that explicitly targets mmWave-UDHNs while addressing
idiosyncrasies of such network does not exist.

B. Proposed Approach and Contributions

In this paper we propose a novel entropy field decom-
position (EFD) based solution that can detect cell outages
in both space and time, and addresses the other limitations
of state-of-the-art solutions discussed above. EFD was first
introduced in [1] and has previously been used successfully
for brain activity mode detection [15] as well as weather

pattern prediction [16], but never in the context of wireless
communication. The rationale behind leveraging EFD to solve
cell outage detection problem is that it identifies the flow of
information in data over both space and time by combining
information field theory [17] and entropy spectrum pathways
theory [18]. Furthermore, EFD is independent of baseline
data model/distribution while also suppressing the effects
of noise in activity mode detection process which makes it
a natural solution for outage detection in mmWave-UDHN
environments marked by heavy shadowing.

The key contributions of this paper can be summarized as
follows:
• We present a coverage hole and outage detection solution

that is independent of the signal propagation model. This
means that the solution can seamlessly be integrated
into practical network planning and self-healing solutions
without the need for modifying underlying coverage
assumptions.

• The proposed solution is designed to identify and min-
imize the impact of shadowing, fading and noise on
outage detection. This allows the solution to detect lapses
in coverage even in the event of heavy signal dispersion
and shadowing. We demonstrate this by comparing the
accuracy of the solution in presence of different shadow-
ing levels.

• The proposed solution incorporates data from both spatial
and temporal domains, thus generating coverage estima-
tions that are more accurate in the long term. This spatio-
temporal characterization of the outages is a unique
feature of this solution that, to the best of the authors’
knowledge, has not been achieved so far.

• We analyze the performance of proposed solution for
different network topologies including mmWave cell,
and mmWave cell-small cell ultra-dense heterogeneous
networks. We also compare the results with k-means
clustering based coverage hole and outage detection
solutions to demonstrate its ability to avoid the issues
faced by machine learning-based techniques.

The rest of the paper is organized as follows: Section II
describes the system model, Section III presents the proposed
EFD solution, Section IV presents the comparative perfor-
mance analysis. Finally, Section V presents the conclusions
of this study.

II. SYSTEM MODEL

For the purpose of this study, we declare that a user is in
outage when the downlink received power of that user from
its associated cell P cr,u falls below a threshold P thr i.e., :

Outage := P cr,u ≤ P thr (1)

The log of downlink received power using the exponential
pathloss model is expressed as:

P cr,udBm
= f(P ct , Gu, G

c
u, b, d

c
u, β) + εcu (2)

where P ct is the transmit power of cell c, Gu is the gain of
user equipment, Gcu is the transmitter antenna gain of cell c,



b is the pathloss constant and depends on the clutter, εcu is the
shadowing at the location of user u from cell c and usually
assumed to be log-normally distributed, dcu is the distance
of subscriber u from cell c, and β is the pathloss exponent.
Assuming each of Gu, Gcu, b, d

c
u and β remains constant, we

can simply re-write (2) as:

P cr,udBm
= f(P ct ) + εcu (3)

Thus, each subset P̂t of the set of cell transmit powers
Pt will result in different received powers at the same point.
As such, we can define the likelihood of receiving a set of
downlink received powers Pr given some set of transmit
powers P̂t as:

p(Pr) =

∫
p(Pr|P̂t)p(P̂t)dP̂t (4)

In the event of a cell outage, the loss of transmission
from the affected cell will result in a unique set of downlink
received powers. Given this set of received powers, we can
find the set of transmit powers including the affected cell
transmit power using Baye’s rule as:

p(P̂t|Pr) =
p(Pr, P̂t)

p(Pr)
(5)

III. ENTROPY FIELD DECOMPOSITION

For a deterministic system with a fixed signal propagation
model and no shadowing, the estimation of (5) is simply a
question of going through all the subsets P̂t and calculating
the resulting sets Pr. However, for a system with random
variations in the signal, this estimation becomes more com-
plex. Furthermore, if these random variations affect the system
both spatially and temporally, as is the case in real mobile
cellular networks, obtaining the conditional probabilities in
(5) becomes intractable. However, one method of obtaining
an estimate of these probabilities which has been explored in
[17] is to use information field theory which represents the
probability distributions in terms of an information field. In
our case, we must first represent the transmit power or signal
data as an information field such that:

Pt(xl, yl, tl) ≡ Pt(ζl) =
∫
ϑδ(ζ − ζl)dϑ (6)

where ζl = xl, yl, tl represents the transformation of spatial
coordinates xi, yi, i = 1, ..., NM and temporal coordinate
tj , j = 1, ..., O as a point on the information field ϑ. The
key descriptor of an information field is the Hamiltonian H
which corresponds to the total energy of the field [19] and is
defined as:

H(Pr,ϑ) = −ln p(Pr,ϑ) (7)

Using the above transformations, (5) can be re-written as:

p(ϑ|Pr) =
eH(Pr,ϑ)

Z(Pr)
(8)

where Z(Pr) =
∫
eH(Pr,ϑ)dϑ is called the partition function.

Since the spatio-temporal received powers in a real network
are not independent of each other, we consider Pt(ζl) as
an interacting field [17] whose Hamiltonian can be derived

through Taylor series expansion of (7) as given in [1]:
H(Pr,ϑ) = H0 +

1

2
ϑ†D−1ϑ− j†ϑ+

∞∑
n=1

1

n!

∫
...

∫
V

(n)
ζ1...ζn

ϑ(ζ1)...ϑ(ζn)dζ1...dζn (9)

where D matrix is the information propagator, the vector
j is the information source, the (.)† notation represents the
adjoint of a matrix, and H0 is the free energy Hamiltonian
[19] which can be obtained by integrating the joint probability
p(Pr,ϑ) over Pr and ϑ. Since H0 is a consequence of an
interaction-less field, it simply acts as a scaling factor for
an interacting field. Also, since we assume that the received
power at each point is not independent of other points due to
shadowing and fading effects, we can safely ignore H0 for
this study. The terms V (n)

ζ1...ζn
represent the interactions of up

to n field components and are integrated over each coordinate.
The matrix D and vector j can be obtained by using the free
theory formalism for a Gaussian signal [17] and are given as:

D =
[
σ2
P̂t

−1
+ f(P̂t)

†N−1f(P̂t)
]−1

(10a)

j = f(P̂t)
†N−1Pr (10b)

where σ2
P̂t

= 〈P̂tP̂t
†
〉 is the covariance of the transmit

powers and N is the covariance of noise in the data.
The interaction terms V (n)

ζ1...ζn
can be obtained using entropy

spectrum pathways theory which ranks the optimal pathways
within a disordered lattice according to their path entropy
[18]. To construct the entropy pathways, we must obtain a
coupling matrix Q of points on the information field lattice.
This can be done by generating an adjacency matrix Aij

of spatio-temporal points in the dataset Pr and using the
transformation ζl = xl, yl, tl to obtain the components of Q
matrix as follows:

Q(ζi, ζj) = Pr(i)Pr(j)Aij (11)
It is important to highlight here that the Q matrix can be

used to represent any relationship between two or more points
in the network regardless of the signal propagation model and
the distributions of shadowing and fading. This is a major
advantage compared to other techniques such as Bayesian
classification that rely on some underlying assumptions re-
garding data and noise distributions which can lead to very
high misclassification error if the actual distribution differs
from the assumed one.

The information field can be reconstructed via entropy
spectrum pathways that allow the representation of the field
in terms of the eigenmodes of Q using Fourier expansion. In
mathematical terms, field components are given as:

ϑ(ζl) =
K∑
k

[akϕ
(k)ζl + a∗kϕ

∗(k)ζl] (12)

where where ϕ(k) is the kth eigenmode, ak is the mode
amplitude of kth eigenmode and the ∗ operator refers to
the conjugate of a number, while K is the number of
significant eigenmodes considered for field transformation.



A key insight here is that by only considering the most
important eigenmodes and keeping K to a reasonably small
value compared to the total number of eigenmodes, we can
obtain a decent estimate of the information field, thus reducing
the problem complexity significantly. To test the importance of
an eigenmode, we can compare the corresponding eigenvalue
λk with the determinant of the noise covariance matrix N .

Using the above information, we can now obtain the
transformed information Hamiltonian H(Pr,ak) by:

H(Pr,ak) =
1

2
ak
†Λak − jk†ak +

∞∑
n=1

1

n!

K∑
k1

...
K∑
kn

Ṽ
(n)
k1...kn

ak1 ...akn (13)

where Λ is a diagonal matrix containing the eigenvalues of
Q, Ṽ (n)

k1...kn
represent the interaction terms of the eigenmodes,

and jk is the amplitude of the kth eigenmode in expansion
of the information source j:

jk =

∫
jϕ(k)dζ (14)

To calculate the values of mode amplitudes, we solve
∂H/∂ϑ = 0 and replace the field with its transformation in
terms of its eigenmodes which gives us:

Λak = jk −
∞∑
n=1

1

n!

K∑
k1

...

K∑
kn

Ṽ
(n)
kk1...kn

ak1 ...akn (15)

If the field interaction terms V (n)
ζ1...ζn

are defined as powers
of the coupling matrix Q such that:

V
(n)
ζ1...ζn

=
α(n)

n

n∑
p=1

∏
m=1
m6=n

QζpQζm (16)

then the mode interaction terms Ṽ (n)
k1...kn

are obtained by:

Ṽ
(n)
k1...kn

=
α(n)

n

n∑
p=1

(
1

λkp

n∏
m=1

λkm

)∫ ( n∏
r=1

ϕ(kr)(ζ)

)
dζ

(17)
where coefficients α(n) should be chosen sufficiently small to
ensure the convergence of (17).

A. Outage Detection Using Entropy Field Decomposition

The result of applying EFD to the coverage data is an
entropy field which identifies how information flows across
the spatio-temporal domains. In order to make this resulting
field output useful for outage detection in MCNs, algorithm
1 presents our proposed outage detection and localization
solution.

The algorithm takes user-cell association Uc information
from the MDT data and the network coverage data when no
outage is present in the network Prnorm , as well as real-
time spatio-temporal coverage data PrRT . The real-time data
is processed using EFD which outputs the data points where
high information flows are detected. In simple terms, the EFD
algorithm gives the boundary between outage and non-outage

effected areas. The points with high energy i.e., the points at
the boundary of the outage are passed to a localization module
which identifies the cell with which the high energy points are
associated. Once the degraded cell is identified, it is passed
as an output which can be fed to an outage diagnosis and
compensation algorithm.

Algorithm 1 Outage Detection Using EFD

Input: Pt,Prnorm ,PrRT ,Uc

Output: ϑ(ζl), c in outage

1: Calculate Q from (11) using PrRT

2: Obtain eigenvalues and eigenvectors of Q using (??)
3: Calculate entropy field ϑ using the eigenvalues and eigenvectors

of Q from (12)
4: for l ∈ 1, ..., NMO do
5: if ϑl > 0 then
6: {u(xout, yout)} = {u(xout, yout)}+ u(xl, yl)
7: end if
8: end for
9: if {u(xout, yout)} = φ then

10: continue
11: else
12: for u(xout, yout) ∈ {u(xout, yout)} do {cout} = {cout}+

{c = argmax∀c∈C P
c
r,u(xout,yout)norm

}
13: end for
14: end if

IV. SIMULATION AND RESULTS

A. Simulation Setup

To test the proposed algorithm, we employed a 3GPP
compliant LTE simulator with the pathloss models for small
cells specified by the 3GPP, and the pathloss for mmWave
directional cells specified in [20]. We only consider a narrow-
band mmWave spectrum, therefore frequency-selective fading
is not considered. Shadowing is modeled using log-normal
distribution with different standard deviations. We use cell
transmit power as the input signal for information field gen-
eration; however, any other coverage actuation parameter such
as transmitter antenna tilts or transmitter antenna gains can be
used just as easily if the relationship between the parameter
and received signal strength is known. The complete list of
simulation parameters are given in Table I.

B. Results
The results presented below compare proposed EFD-based

outage detection solution with outage detection using k-means
clustering algorithm. Performance of the two solutions is
evaluated using two different topologies: 1) mmWave cells
only, and 2) UDHN. Outages are simulated by setting the
transmit power of the effected cell to 0 dB. In the case of
mmWave cells only, one sector of first mmWave base station
is in outage, while in the case of heterogeneous network one
sector of first mmWave base station and one small cell are in
outage. Simulations are carried out for shadowing εcu ∈ [0, 10]
to assess the efficacy of EFD and k-means in mitigating the
effects of noise in the data. Note that though the algorithms for



TABLE I: Parameter Settings for Simulation

System Parameters Value

Transmission Frequency Small: 2 GHz, mmWave: 38
GHz

Small Cell Transmit Power Max: 20 dBm, Outage: 0 dBm
mmWave Cell Transmit Power Max: 41 dBm, Outage: 0 dBm
Antenna Gain Small: 5dBi, mmWave: 25dBi
Horizontal Beamwidth Small: 360◦, mmWave: 7.8◦

Cell Height Small: 10m, mmWave: 23m
Cell Layout (small cells) Uniformly distributed
Cell Layout (mmWave cells) Hexagonal
Transmission Bandwidth 10 MHz
Number of Base Stations 7
Sectors per Base Station 3
Small Cells per Sector 1

Fig. 1: Small cell and mmWave cell outage simulated in a
UDHN with 0dB shadowing.
EFD and k-means clustering are implemented using data from
spatio-temporal dimensions, the presented results for coverage
and outage detection are averaged over time.

Figs. 1-4 show examples of the simulated outages in a
UDHN and mmWave-cell only network under 0dB and 10dB
shadowing. For the UDHN cases, one small cell and one
mmWave cell is in outage. Subfigures (a) show the network
under normal coverage while subfigures (b) show the network
in the presence of outages. Subfigures (c) show the results of
outage detection using EFD and subfigures (d) show outage
detection using k-means clustering.

To truly analyze the impact of EFD and k-means out-
age detection, we test the two techniques over a range of
shadowing values and compare the true positive detection
rate (TPR) and false positive detection rate (FPR) of out-
age effected users. Fig. 5 shows a comparison of the two
outage detection schemes for mmWave cell networks and
UDHNs under increasing levels of shadowing. We can see that
EFD gives highly accurate TPR (> 96%) even under heavy
shadowing. This is because of the intrinsic noise countering
capabilities of the EFD solution. Conversely, the TPR of k-
means clustering is very high for low fading environments
(> 98%) but drops off exponentially as the shadowing is
increased. This also highlights the limitations of machine
learning techniques with respect to the noise in input data,

Fig. 2: Small cell and mmWave cell outage simulated in a
UDHN with 10dB shadowing.

Fig. 3: mmWave cell outage simulated in mmWave-cell only
network with 0dB shadowing.
something that EFD effectively counters intrinsically.

Fig. 6 presents another perspective of evaluating the per-
formance of the two algorithms i.e., by comparing their FPR.
This tells us whether the two algorithms actually do perform
outage detection or are simply flagging majority of the points
as outage affected. From Fig. 6 we can see that the EFD-based
outage detection solution has a significantly low FPR for both
mmWave cell networks and UDHNs (< 6%). In comparison,
k-means clustering has a relatively higher FPR. FPR for EFD
is caused due to the detection of maximum entropy boundary
which includes the non-outage effected users at the edge of
the outage effected areas. On the other hand, the FPR of k-
means is primarily due to the effects of shadowing.

V. CONCLUSION

In this work, we present a novel cell outage detection
solution based on entropy field decomposition. The pro-
posed solution is designed to improve network reliability by
mitigating the effects of shadowing on outage detection, a
feature that is not common in state-of-the-art machine learning
based outage detection solutions. The proposed solution is
compared with k-means clustering technique for different
network topologies and shadowing levels. The results show
that EFD-based outage detection performs extremely well
even in high shadowing environments compared to k-means
clustering making it ideal for outage detection in high density
mmWave cell heterogeneous networks.



Fig. 4: mmWave cell outage simulated in mmWave-cell only
network with 10dB shadowing.

Fig. 5: True positive rate comparison of EFD and k-means
clustering outage detection for mmWave cell network and
UDHN.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant Numbers 1559483, 1619346
and 1730650. For further information about these projects
please visit www.bsonlab.com.

REFERENCES

[1] L. R. Frank and V. L. Galinsky, “Detecting spatio-temporal modes in
multivariate data by entropy field decomposition,” Journal of Physics
A: Mathematical and Theoretical, vol. 49, no. 39, p. 395001, 2016.

[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What Will 5G Be?” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.

[3] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam,
T. Yoo, O. Song, and D. Malladi, “A survey on 3GPP heterogeneous
networks,” IEEE Wireless Communications, vol. 18, no. 3, pp. 10–21,
June 2011.

[4] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter Wave
Mobile Communications for 5G Cellular: It Will Work!” IEEE Access,
vol. 1, pp. 335–349, 2013.

[5] J. G. Andrews, X. Zhang, G. D. Durgin, and A. K. Gupta, “Are we
approaching the fundamental limits of wireless network densification?”
IEEE Communications Magazine, vol. 54, no. 10, pp. 184–190, October
2016.

[6] S. Chernov, M. Pechenizkiy, and T. Ristaniemi, “The influence of
dataset size on the performance of cell outage detection approach in
LTE-A networks,” in Proc. 10th International Conference on Informa-
tion, Communications and Signal Processing (ICICS), Dec 2015, pp.
1–5.

Fig. 6: False positive rate comparison of EFD and k-means
clustering outage detection for mmWave cell network and
UDHN.

[7] M. N. Kulkarni, S. Singh, and J. G. Andrews, “Coverage and rate trends
in dense urban mmWave cellular networks,” in Proc. IEEE Global
Communications Conference (GLOBECOM), Dec 2014, pp. 3809–3814.

[8] A. Asghar, H. Farooq, and A. Imran, “Self-healing in emerging cellular
networks: Review, challenges and research directions,” IEEE Commu-
nications Surveys & Tutorials, pp. 1–1, 2018.

[9] A. Zoha, A. Saeed, A. Imran, M. A. Imran, and A. Abu-Dayya, “A
learning-based approach for autonomous outage detection and coverage
optimization,” Transactions on Emerging Telecommunications Tech-
nologies, vol. 27, no. 3, pp. 439–450, 2016.

[10] 3GPP, TS 37.320 V10.1.0; Evolved Universal Terrestrial Radio Access
(E-UTRA); Radio measurement collection for Minimization of Drive
Tests (MDT); Overall description; Stage 2, 3GPP TS, Rev. V8.3.0
Release 8, 2010.

[11] F. Chernogorov, J. Turkka, T. Ristaniemi, and A. Averbuch, “Detection
of Sleeping Cells in LTE Networks Using Diffusion Maps,” in Proc.
IEEE 73rd Vehicular Technology Conference (VTC Spring), May 2011,
pp. 1–5.

[12] G. Ciocarlie, U. Lindqvist, K. Nitz, S. Nováczki, and H. Sanneck,
“On the feasibility of deploying cell anomaly detection in operational
cellular networks,” in Proc. IEEE Network Operations and Management
Symposium (NOMS), May 2014, pp. 1–6.

[13] O. Onireti, A. Zoha, J. Moysen, A. Imran, L. Giupponi, M. A. Imran,
and A. Abu-Dayya, “A Cell Outage Management Framework for Dense
Heterogeneous Networks,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 4, pp. 2097–2113, April 2016.

[14] T.-L. Tien, “A new grey prediction model FGM(1, 1),” Mathematical
and Computer Modelling, vol. 49, no. 7, pp. 1416 – 1426, 2009.

[15] L. R. Frank and V. L. Galinsky, “Dynamic Multiscale Modes of Resting
State Brain Activity Detected by Entropy Field Decomposition,” Neural
Computation, vol. 28, no. 9, pp. 1769–1811, 2016, pMID: 27391678.

[16] L. R. Frank, V. L. Galinsky, L. Orf, and J. Wurman, “Dynamic
multiscale modes of severe storm structure detected in mobile
doppler radar data by entropy field decomposition,” J. Atmos.
Sci., vol. 75, no. 3, pp. 709–730, Mar. 2018. [Online]. Available:
https://doi.org/10.1175/JAS-D-17-0117.1

[17] T. A. Enßlin, M. Frommert, and F. S. Kitaura, “Information field
theory for cosmological perturbation reconstruction and nonlinear signal
analysis,” Phys. Rev. D, vol. 80, Nov 2009.

[18] L. R. Frank and V. L. Galinsky, “Information pathways in a disordered
lattice,” Phys. Rev. E, vol. 89, p. 032142, Mar 2014. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevE.89.032142

[19] W. R. Hamilton, “On a general method in dynamics; by which the
study of the motions of all free systems of attracting or repelling points
is reduced to the search and differentiation of one central relation, or
characteristic function,” Philosophical transactions of the Royal Society
of London, vol. 124, pp. 247–308, 1834.

[20] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun,
“Wideband Millimeter-Wave Propagation Measurements and Channel
Models for Future Wireless Communication System Design,” IEEE
Transactions on Communications, vol. 63, no. 9, pp. 3029–3056, Sept
2015.


