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Abstract—5G is expected to serve diverse applications and
users due to the popularity of Internet of Things (IoT), big data
and industrial applications. Many of these IoT and industrial
applications have inherent loss tolerance that can be used to
enable energy efficient uplink communication. The uplink energy
efficient system will increase the battery life of devices enabling
new use cases in industrial IoT. In this paper, we map the
effects of application loss tolerance to the rate requirements of
the user. We then mathematically model an energy minimization
problem for the uplink user association and resource allocation
in heterogeneous networks. We aim to provide acceptable quality
of service (QoS) with improved energy efficiency by exploiting
the loss tolerance and bandwidth expansion simultaneously. A
distributed uplink joint user association and resource allocation
strategy for uplink energy per bit minimization is presented. We
conduct extensive simulation based study for a heterogeneous
network to evaluate the performance of our proposed schemes.
Average energy per bit consumption in the proposed scheme is
-74 dB compared to -53 dB in state-of-the-art channel individual
offset (CIO) scheme.

Index Terms—Industrial IoT, Energy Efficiency, Loss Tolerant
Applications

I. INTRODUCTION

The rise of smartphones, running diverse bandwidth and
energy-hungry applications, has heralded a paradigm shift
in modern cellular communications with a greater emphasis
on energy efficiency and efficient bandwidth utilization. It is
expected that future 5G networks will have to support a large
number of users with extremely diverse requirements and a
wide variety of applications such as big data, industrial IoT
and multimedia communication to name a few. A one-model-
fits-all approach can no longer meet the ever varying user
demands with limited cellular resources. In the light of these
requirements, recent research efforts [1], [2] have emphasized
the importance of context awareness, loss tolerance, and
energy efficiency, for effectively providing 5G services while
meeting the expected QoS.

The loss tolerance of many modern applications, and de-
vices motivates the case for loss tolerance and context aware-
ness in 5G. Many industrial IoT devices send large amount of
data periodically and have constraints on the uplink transmit
power and battery life of the device. These devices might
tolerate errors for lower power consumption [3]. Similarly
modern big data and machine learning applications have
inherently built-in loss tolerance [2] providing an extra cushion
of loss tolerance. The loss tolerance of each device is dictated

by the target industrial application—i.e., an application might
tolerate a certain error rate for lower energy consumption while
another user might not want to compromise the quality.

To meet the energy efficiency and bandwidth requirements
of 5G, network densification has emerged as a prominent
solution [4]. A number of small base stations (BS) in addition
to traditional BS are deployed during network densification.
This densification creates a heterogeneous network (HetNet)
that brings BS closer to users with improved links. However,
HetNet creates new challenges for the research community
such as uplink-downlink asymmetry, load imbalance, backhaul
bottleneck and mobility management [5]. An optimal asso-
ciation for uplink becomes sub-optimal for downlink due to
the uplink-downlink asymmetry. Mohamed et al. [6] proposed
uplink-downlink separation where a user can associate itself
with different BS for uplink and downlink. It is shown that the
separated architecture provides a better uplink-downlink rate
coverage [7].

In this work, we exploit decoupled uplink-downlink archi-
tecture and present a distributed energy efficient uplink user
association and resource allocation scheme. We consider a
network scenario in which the network has enterprise small
cells and there is multi-user demand diversity (time-dependent
disparity in the user load). The network is designed to meet
the user QoS requirements at peak load scenarios. Our solution
uses application level loss tolerance and bandwidth expansion
strategy, i.e., allocating more bandwidth where available (e.g.,
at off-peak times) in a bid to lower energy per bit consump-
tion [8], [9]. We define residual bandwidth at a BS as the
bandwidth that is not assigned to a user and is available for
allocation to new users. Our association scheme considers
residual bandwidth in addition to the path loss to the serving
BS. The BS with more residual bandwidth can provide more
spectrum to the user and hence the user can reduce the transmit
power for the same QoS requirements. We also model the
effects of application and user specific loss tolerance to the
rate requirements of the users. It is shown that by exploiting
both loss tolerance and bandwidth expansion, user association
and resource allocation can be performed more efficiently.

Major contributions of this paper are:
• A model to map the effects of application and user level

loss tolerance on effective rate requirements of the user
is presented. This model helps to achieve higher uplink



energy efficiency by incorporating loss tolerance in user
association and resource allocation decisions.

• We present, to the best of our knowledge, a first of
its kind work that uses both bandwidth expansion and
loss tolerance in user association and resource allocation
decisions. An energy per bit minimization problem is
formulated and a distributed user association and resource
allocation algorithm that exploits bandwidth expansion
and loss tolerance is presented.

• Performance evaluation shows that our proposed scheme
yields a significant improvement in uplink energy per bit
consumption compared to the state-of-the-art maximum
reference signal received power (RSRP) and channel
individual offset (CIO) schemes.

II. RELATED WORK

The loss tolerance of applications and users has already
been used for energy efficiency in literature. Butt et al.
[10] presented energy efficient scheduling for loss tolerant
applications. The scheduling scheme allowed to drop a certain
number of packets with constraints on average packet drop
and successive packet loss. The energy-performance tradeoff
without perfect channel state information at the transmitter and
receiver was explored in [11].

Bandwidth expansion has been used for energy efficient
resource allocation strategy in one-tier network that trades
bandwidth for energy efficiency at off-peak times [8]. The
authors in [9] quantified the limits of bandwidth expansion
factor and associated gains in downlink energy efficiency.
These efforts on bandwidth expansion consider traditional
one-tier network. HetNets, with more than one option for
association, provide another degree of freedom in bandwidth
expansion. Bandwidth expansion was extended to HetNets
model in [12].

Zhou et al. [13] formulated a mixed-integer non-linear
programming optimization problem for energy efficient user
association and presented a three layer iterative algorithm to
solve the problem. Zhang et al. [14] studied the problem
of user association and power allocation in millimeter based
networks. They convert the mixed integer programming op-
timization problem into a convex problem by relaxing the
user association indicator and solve it by Lagrangian dual
decomposition. Wahedi et al. [15] presented a distributed user
association scheme for mobile and IoT devices in HetNets.
They proposed a multi-class user driven algorithm based on
multi-armed bandit game with improvements in throughput,
signalling and energy efficiency. A matching game based al-
gorithm for user association was presented in [16]. The authors
aim to maximize user throughput with fairness and minimize
uplink transmit power consumption. In contrast to the previous
work in user association and resource allocation, we use loss
tolerance for the first time in joint uplink user association and
resource allocation. We exploit both bandwidth expansion and
loss tolerance for uplink energy per bit minimization.

III. SYSTEM MODEL

A. Diversity and Loss Tolerance of Applications
We consider that the rate requirement of a user results from

the rate requirements emerging from a set of applications at

the user. Let us assume that nu represents the number of appli-
cations running on a user u. A vector ~Au of dimension 1×nu
at each user u of length nu represents the rate requirement of
each application. Each element Aui of the vector ~Au represent
the rate required by each application. We also incorporate the
inherent loss tolerance of different applications in our model.
Loss tolerance is defined as an average data loss an application
tolerates, i.e., the QoS of the application is acceptable at the
receiver. The loss tolerance of applications can help to reduce
its rate requirements.

We define another vector ~Eu of dimension 1×nu to capture
the loss tolerance at each user u for each application on the
user. The average tolerable rate requirement Ru of a user u
is calculated using the actual rate requirements Au and Eu as
follows,

Ru = ~Au(1 − ~Eu
T

) (1)

Both ~Au and ~Eu have real numbers and the transpose of ~Eu
converts it from a row vector to a column vector making Ru
a scalar number. Each element of ~Eu, Eui captures the loss
tolerance of application i running at a user u. The value of Eui
can vary from one user to another for the same application
to model different acceptable QoS for different users. For
example, one user might want to save cost for a low quality
video on a video based application but another user is willing
to pay more but does not want to compromise the video quality
for the same application. Although the same application is
running on both users, the value of Eui for the first user is
higher than the latter.

We define a matrix of loss tolerance Φu at a user that has
multiple levels of loss tolerance for each application i. Φu is
a nu × lu matrix where lu is the number of levels for loss
tolerance for a specific user u. So, Φu has rows equal to the
number of applications and columns representing each level
of loss tolerance. Each entry of the matrix Φu, Φu(i, j) is
the jth level of tolerance for the application i. The first entry
of each row, Φu(i, 1) is the highest level of loss tolerance
for application i. Eui, the chosen level of loss tolerance for
application i on user u, can take values from the ith row of
the matrix Φu. The value of tolerance Eui for application i at
user u should be less than or equal to Φu(i, 1) of matrix Φu.

Φu =


Φu(1, 1) Φu(1, 2) ... ... Φu(1, lu)
Φu(2, 1) Φu(2, 2) ... ... Φu(2, lu)

. . .

. . .

. . .
Φu(nu, 1) Φu(nu, 2) ... ... Φu(nu, lu)

 (2)

B. Loss Tolerance Illustrated Through An Example

An instance of loss tolerance matrix at user u, Φu is
described below for 3 applications and maximum tolerance
factor 3.

Φu =

0.19 0.12 0.06
0.11 0.03 0

0 0 0

 (3)

The user has three applications running on it and the maximum
number of levels of loss tolerance for any application at the



user is three. So, Φu comes out to be a 3× 3 matrix with ith
row containing levels of loss tolerance for application i. The
first applications at the user has three levels of loss tolerance:
19%, 12% and 6%. This shows that the user cannot tolerate
more than 19% errors for the first application. The second
application has only two tolerance levels of 11% and 3%. So,
the user can tolerate a maximum of 11% errors for second
application. The last entry of second row is zero because the
user is willing to pay more for second application if errors are
zero. The third application at the user is non-tolerant and has
a loss tolerance of zero. Hence, the third row of Φu contains
all zero elements.

C. Network Topology
We consider a two-tier HetNet topology in which a macro-

cell network is overlaid with small cells. Each macro cell has
three sectors with directed antennas while each small cell has
omni-directional antennas. There is at least one small cell
under the coverage area of a macro cell. Macro and small
cells use the same frequency spectrum for transmission and
the frequency reuse factor is 1. The total bandwidth at a BS
c is εc.

The minimum bandwidth ηu,c required by user u from a
BS c to meet its rate requirements is given by the following
equation where γ′u,c is the SINR with maximum power level
maxPu,c of user,

ηu,c =
Ru

log2(1 + γ′u,c)
(4)

We use γu,c to denote SINR of user u associated with BS c
and is given by,

γu,c =
Pu,cGuδa(du,c)

−β

K +
∑
∀j∈Uu

Pt,jGjδa(dj,c)−β
(5)

where Pu,c is the transmit power of user u communicating to
BS c, Gu and Gj are the UE gains, δ is signal shadowing,
a is path loss constant, Pt,j is the transmit power of the
interfering user j, du,c and dj,c are the distances from user
u and interfering user j to BS c respectively, β is the path
loss exponent, and K is the thermal noise power. The set Uu
contains all the uplink users in the neighboring cells which
have been allocated the same bandwidth resources as user u
and hence become the interferers for u. If a BS can provide
bandwidth greater than ηu,c to a user, the user can achieve
the same rate Ru even with a decreased SINR. This newly
available margin in SINR can be used to reduce the transmit
power. We define the available bandwidth Bu,c as resources
that a BS c decides to allocate for a user u. The minimum
value of Bu,c is ηu,c but a BS can decide to provide Bu,c
greater than ηu,c to reduce the power consumption. The rate
Ru for user u from BS c is given by,

Ru = Bu,c log2(1 + γu,c) (6)

The transmit power of the user u to communicate with BS
c can be found by replacing the value of SINR in equation
(6),

Pu,c =

(
2

Ru
Bu,c − 1

)K +
∑
∀j∈Uu

Pt,jGjδa(dj,c)
−β

Guδa(du,c)−β
(7)

It is assumed in the above equation that BS has complete
interference information. The energy per bit in uplink (Eb)u,c
for a user u communicating with BS c can be computed using
(7) is given by,

(Eb)u,c =
Pu,c
Ru

(8)

A set Uc contains all the users connected to BS c and set C
contains all the BS in the network. Now we want to choose
the optimal bandwidth and BS that minimizes energy per bit
for all the users. The optimization problem is formulated as,

min
Bu,c,du,c

∑
C

∑
Uc

(Eb)u,c

s.t.
∑Uc
u=1Bu,c ≤ εc ∀c

γu,c ≥ 0 ∀u, c
Eui ≤ Φu(i, 1) ∀u, i
Bu,c ≥ 0 ∀c, u

(9)

The goal of eq. (9) is to choose the best BS and resources
for minimizing the energy per bit consumption. Bu,c is the
bandwidth assigned to the user u from BS c and du,c is the
distance between the user and the BS. The first constraint
describes that for all C the sum of allocated bandwidth for all
the users associated to a BS c cannot be greater than the total
bandwidth at the BS εc. εc is already fixed for each BS c during
the network deployment. The second constraint restricts the
SINR for all Uc which cannot be less than 0 dB. This makes
sure that SINR is good enough to decode the signal even with
lower transmit power. The third constraint states that for all
Uc the chosen value of the loss tolerance should be less than
or equal to the maximum loss tolerance for an application i of
the user u. This ensures minimum QoS requirement for all the
applications at a user. The forth constraint describes that for
all C and Uc the assigned bandwidth is always greater than
or equal to zero.

The optimization variables of eq. (9) are the bandwidth
allocated to the users and the distance between the user and
the BS. Bandwidth assigned to a user can vary from minimum
bandwidth required by the user to the total bandwidth at the
BS and is a continuous variable. However, there are a finite
number of candidate base stations a user can communicate
to and hence the distance between the user and the BS can
take a finite number of discrete values. So, the distance is
a discrete variable. The first constraint is dependent on the
continuous variable, bandwidth and the second constraint is
dependent on SINR γu,c. γu,c in turn depends on the discrete
variable, distance as shown in eq. (5). The problem is a
mixed integer non-linear programming problem. These kind of
problems are computationally hard to solve and are considered
computationally intractable. The search space of eq. (9) grows
exponentially with the number of users in the network. An
optimal solution can be obtained using an exhaustive search
on all the users in the network which is computationally
very expensive and is not suitable for practical systems.
Furthermore, a new global solution needs to be computed
whenever a user enters or leaves the network. Hence, we
present a distributed solution to solve the problem.

IV. RESOURCE ALLOCATION AND USER ASSOCIATION
METHODOLOGY

We present a two-fold user association and resource alloca-
tion scheme where both the BS and the user are involved in the



association decision. The simple distributed model proposed
in [12] is used to compute the AssociationScore in the
following way,

AssociationScore =

(
2

Ru
Bu,c − 1

)α(
1

Guδa(du,c)−β

)1−α

(10)

where α is the association exponent that can be used to
vary the importance of residual bandwidth in the association
decision. Association decision will give less importance to
residual bandwidth with lower values of α. In addition, the
user association will be similar to Max RSRP when α is
set to zero. AssociationScore considers the impact of the
two optimization variables and it is based on uplink transmit
power described in eq. (7). Hence, associating to the BS with
minimum AssociationScore minimizes the uplink power and
in turn the energy per bit of the user. In this work, we
jointly use loss tolerance and bandwidth expansion for energy
efficient user association and resource allocation. We present a
simple distributed algorithm for user association and resource
allocation. Two entities take part in the user association and
resource allocation decision—the BS and the user.

A. Algorithm at the Base Station

Base stations receive the rate requirements of a new user
u. Each BS calculates the minimum bandwidth ηu,c required
to meet the rate requirements of the user according to eq. (4).
The base stations for which minimum bandwidth is less than
the total bandwidth are chosen as candidates for association.
Each candidate BS then performs an exhaustive search to find
optimal resources for all the already connected users and the
new user. This exhaustive search exploits bandwidth expansion
at off-peak times and finds an optimal multiple xu,c of the
minimum bandwidth for all the connected users to the BS c.
The exhaustive search increases the value of xu,c for each
connected user until either all the resources of the BS are
allocated or the second constraint of eq. 9 is met. This ensures
that the BS attempt to allocate 100% of the resources in such
a way which minimizes the average power consumption of all
the connected users while meeting all the constraints of eq.
(9). However, second constraints of eq. (9) limits the value of
xu,c making sure that the signal can be decoded even after
the power reduction due to the bandwidth expansion. The
bandwidth Bu,c that the BS c decides to allocate to the user
u is given by,

Bu,c = xu,cηu,c (11)

Each candidate BS transmits this Bu,c to the user u along with
a signal to indicate the presence of residual bandwidth at the
BS even after allocating Bu,c to the user. This indicates that
the BS has enough bandwidth to improve services for some
applications at the user. The algorithm at the BS is similar to
the distributed algorithm of [12] with the indication of residual
bandwidth as an extra step.

B. Algorithm at the user

Each new user calculates the minimum rate requirements
to meet the needs of all the applications. The minimum rate
requirements are calculated using the maximum value of loss
tolerance for all the applications at the user. The first element

of each row Φu(i, 1) from matrix Φu is the maximum toler-
ance of each application i as described in eq. (2). One element
from ith row of Φu, indicating all levels of tolerance for
application i , can be selected as the value of Eui . Eui is given
the first value of the row i from the matrix Φu i.e. Φu(i, 1) to
compute minimum rate requirement for user u. This minimum
rate requirement is then transmitted to all the base stations.
Each BS then decides the optimal bandwidth for allocation to
the user as described in subsection IV-A. The user receives
the optimal allocated bandwidth Bu,c from each candidate BS
c. The user then calculates the AssociationScore for each
BS as described in eq. (10). The user associates to the BS
with minimum AssociationScore. The BS also sends a signal
indicating the availability of residual bandwidth at the BS. The
applications at the user cannot be given lower levels of loss
tolerance if there is no residual bandwidth at the BS. However,
some applications at the user can operate at lower tolerance
if there is residual bandwidth at the BS. In case of residual
bandwidth at the BS, the user decreases the tolerance level
of an application and computes the new rate requirements.
The application is selected based on a pre-defined importance
ranking at each user. The user then receives a new bandwidth
from the BS based on the new rate requirements. This step is
repeated until there is no residual bandwidth at the BS or all
the application at the user are operating at the lowest level of
loss tolerance.

Algorithm 1 User Assocation and Resource Allocation Algo-
rithm at the user u
(a) Find the rate requirements Ru of the user u as described
in equation 1;
(b) Publish the rate requirements Ru to all the BS;
(c) Use Bu,c from each BS to compute the
AssociationScore;
(d) Associate user u to the BS c with minimum
AssociationScore;
while residual bandwidth at the BS and there are lower levels
of loss tolerance for one or more application do

(e) Decrease the value of Eui for the most important
application i at the user;
(f) Repeat Step (a) i.e. compute the new rate
requirements;
(g) Get new bandwidth Bu,c from the BS for the new
rate requirements of step f ;

end

C. An Illustrative Toy Example
An illustrative example of the algorithm at the BS and at the

user is given in Fig. 1. An instance is shown where a new user
wants to join the network and both the user and the BS interact
for optimal user association and resource allocation. The user
can associate with any one of the three candidate base stations
shown. The user calculates rate requirements Ru of 18.7 kbps.
The first entry from each row of loss tolerance matrix Φu is
used to calculate Ru. All BS calculate the minimum bandwidth
required ηu,c which comes out to be 2 kHz, 5.7 kHz and 6.3
kHz for BS 1, 2 and 3 respectively. Each BS then exploits
bandwidth expansion and calculate the optimal bandwidth for



Fig. 1. An illustrative toy example in which we enlist the steps taken during
the interaction of the algorithms at the user and at the BS.

allocation to all the user. The bandwidth Bu,c that each BS
decides to allocate to the user for BS 1, 2 and 3 is 18 kHz,
17.2 kHz and 12.7 kHz respectively. The user calculates the
AssociationScore for each BS and associates to BS 1 with
minimum score of 1.6 × 104. If there is residual bandwidth
at the BS, the user uses the loss tolerance matrix to provide
better rates to as many applications as possible. All the steps
of the algorithm at the BS are shown for BS 1 while brief
highlights of main steps are shown for BS 2 and BS 3. The
user association strategy exploits bandwidth expansion and
loss tolerance to minimize the energy per bit consumption of
the user while providing the best possible rates to as many
applications as possible.

V. SIMULATION SETUP AND RESULTS

We present the simulation setup and simulation results in
this section. We perform Monte Carlo simulations to compare
the proposed user association and resource allocation algo-
rithm with the state of the art Max RSRP and CIO based
schemes [17]. User is associated to BS with highest RSRP in
Max RSRP scheme while a constant offset is added in RSRP
of small cells for CIO based scheme to shift the users towards
small cells.

A. Simulation Setup

We employ a 3GPP-compliant LTE network topology [18]
with macro cells overlaid with small cells. We deploy and
simulate a two-tier HetNet with 7 macro BS. Small BS are
distributed in each sector of macrocell with uniform density.
A fraction of both indoor and outdoor UEs are concentrated
near small base stations to model hotspot scenarios. The ratio
of indoor to outdoor users is 4:1. The number of applications
at a user follows a uniform distribution with range [1,maxnu]
for the simulation analysis. maxnu is the maximum number
of applications that can run on any user. The rate requirement
of an application i at a user Aui also follows a uniform

Fig. 2. Power comparison of our scheme compared to Max RSRP and 10 dB
CIO based schemes. The transmit power of all users is 20 dBm in CIO based
and Max RSRP schemes while our algorithm uses bandwidth expansion to
reduce the uplink transmit power of the users.

distribution with range [1,maxA]. maxA is the maximum
rate requirement of an application at any user. The simulation
parameters are summarized in Table I.

TABLE I
DESCRIPTION OF SIMULATION PARAMETERS

Parameter Description Value
Number of Macro BS 7
Number of Sectors per Macro BS 3
Number of small BS per sector 1
Number of Users per sector 25
System Bandwidth 10 MHz
Maximum User Transmit Power (maxPu,c) 20 dBm
Transmission Frequency 2 GHz
Inter-site Distance of Macro BS 500m
Macro BS and small BS Height 25m and 10m
Network Topology Hexagonal
Association Exponent 0.5
User and BS Noise Figure 7 dB and 5 dB
maxnu and maxA 10 and 10kbps

B. Simulation Results

In this subsection, we provide an analysis of the proposed
user association and resource allocation algorithm from the
described simulation setup. A comparison of uplink transmit
power is presented in Fig. 2. Both Max RSRP and CIO based
schemes transmit at the maximum power threshold of the
user (20 dBm). Our scheme exploits off-peak times and uses
bandwidth expansion to reduce the transmit power of the users.
At off-peak times, there is excess bandwidth at the BS and
hence can be assigned to the communicating users. We use
this residual bandwidth to allocate more resources to the users.
Hence, the user can transmit at a lower power and still achieves
the same rate requirements due to bandwidth expansion. The
average uplink power consumption in our algorithm is -1 dBm
compared to 20 dBm in both Max RSRP and CIO based
schemes. This reduction in transmit power at off-peak times
can decrease the overall power consumption of users and
will expedite the inclusion of battery limited devices in 5G
architecture.

Both algorithms at the BS and at the user ensure lower
transmit power with the highest possible rates to as much
application as possible. However, the algorithm also guar-
antees rates above the minimum rates for all applications
incorporating the highest level of loss tolerance. A comparison
of energy per bit consumption defined in eq. (8) is presented



Fig. 3. Energy per bit consumption of our algorithm compared to the Max
RSRP and CIO based association. Our solution exploits both bandwidth
expansion and loss tolerance and achieves better energy per bit compared
to Max RSRP and CIO based scheme.
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Fig. 4. SINR comparison of our scheme compared to Max RSRP and 10
dB CIO based schemes. Lower uplink transmit power decreases SINR in
the proposed algorithm and bandwidth expansion ensures same rate to users
despite lower SINR.

in Fig. 3. The proposed algorithm outperforms Max RSRP and
CIO based association. The average uplink energy per bit is
-74 dB in our algorithm compared to -53 dB in Max RSRP
and CIO based scheme. Hence, the user can transmit the same
number of bits in our algorithm with less energy consumption.

The proposed scheme in this paper aims to lower the uplink
energy per bit consumption and uplink transmit power. SINR
in our scheme is expected to decrease due to lower transmit
power. Fig. 4 compares the SINR of the proposed algorithm
with Max RSRP and CIO based association schemes. As
expected the SINR in our scheme is lower than both Max
RSRP and CIO based association. However, the rates to the
user remains the same due to bandwidth expansion where user
can get bandwidth more than the minimum requirements.

VI. CONCLUSION

In this paper, we exploit bandwidth expansion and loss
tolerance of application to design a user association and
resource allocation schemes. We present two algorithms, one
at the BS and the other at the user, that work hand in hand
to reduce the uplink energy per bit consumption of the users.
In our scheme, each user starts with the lowest but acceptable
rate for all applications running on it. The user then deploys
an iterative algorithm to provide better rates to as much
applications as possible. Our numerical study shows that the
proposed scheme achieves an average reduction of 21 dB in
energy per bit consumption as compared to Max RSRP and
CIO based association scheme. This reduction in energy per

bit of user can help to include more battery constrained in 5G
networks opening new research avenues in industrial IoT.
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