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Abstract—In the first phase of 5G network deployment, User
Equipment (UE) will camp traditionally on LTE network. Later
on, if the UE requests a 5G service, it will be made to camp
simultaneously on LTE and 5G. This dual-camping is enabled
through a 3GPP-standardized approach known as E-UTRAN
New-Radio Dual-Connectivity (EN-DC). Unlike single-network-
camping, where poor RF conditions of only one network affect
user Quality-of-Experience (QoE), in EN-DC, poor RF condition
in either LTE or 5G network can be detrimental to user QoE.
Sub-optimal parameter configuration to activate EN-DC can
hamper retainability KPI as UE may observe increased radio link
failure (RLF). While the need to maximize the EN-DC activation
is obvious for 5G network maximum utility, RLF avoidance
is equally important to maintain the QoE requirements. We
address this problem by first using Tomek Link to counter data
imbalance problem and then building an AI model to predict
RLF from real network low level measurements. We then propose
and evaluate an RLF risk-aware EN-DC activation scheme
that draws on insights from the developed RLF prediction
model. Simulation using a 3GPP-compliant 5G simulator show
that compared to no-conditioning on EN-DC activation, in the
evaluated cell cluster, the proposed scheme can help reduce the
potential RLF instances by 99%. This RLF reduction happens at
the cost of 50% reduction in EN-DC activation. This is first study
to present a framework and insights for operators to optimally
configure the EN-DC activation parameters to achieve desired
trade-off between maximizing 5G sites utility and QoE.

Index Terms—5G, New Radio, EN-DC, Radio Link Failure,
Artificial Intelligence

I. INTRODUCTION

5G with innovative use cases of enhanced Mobile Broad-
band (eMBB) for large volume transmissions, massive Ma-
chine Type Communications (mMTC) for sensors and IoT
devices, and Ultra Reliable Low Latency Communications
(URLLC) for self-driven comes with unprecedented Quality of
Experience (QoE) goals. Studies project that 5G subscriptions
will top 2.6 billion by the end of 2025 [1].

While in 5G the capacity crunch will be addressed primarily
by ultra-dense base station deployment and mmWave band
utilization, ensuring QoE with a conglomeration of new
and legacy technologies remains an open challenge of great
importance.

As per 3GPP Release 15 specification 37.863 [2], E-
UTRAN New Radio Dual Connectivity (EN-DC) allow 5G
capable User Equipments (UEs) to simultaneously connect
to an LTE eNodeB (eNB) that acts as a master node and
a 5G gNodeB (gNB) that acts as a secondary node. This
non-standalone 5G network deployment will help mobile
operators to reduce the capital expenditure (CAPEX), and will
accelerate the penetration of 5G networks even in developing

countries with already deployed LTE network. However, the
added complexity involves signaling and the decision when
to activate/deactivate EN-DC mode.

While the goal is to effectively push UE to dual con-
nectivity with 5G gNB as soon as possible, sub-optimal
configuration can lead to excessive amount of ping-pong EN-
DC activation/deactivation and repeated Radio Link Failures
(RLFs). By accelerating the EN-DC activation in an attempt
to increase network efficiency, EN-DC may be triggered at
poor RF conditions at either LTE or 5G network. This can
result in call disconnect and service interruption. Following
the service disruption, repeated re-accessibility attempts not
only increases signaling but degrade UE energy efficiency as
well. Thus, optimal configuration to activate/deactivate EN-
DC is essential to maintain the expected QoE and network
efficiency of 5G network.
A. Related Work

Intra-frequency and inter-frequency dual-connectivity have
been studied extensively in literature [3]–[6]. A detailed
review of these studies can be found in a recent survey on
the topic of mobility management in emerging networks [7].
However, to the best of Author’s knowledge no study in
existing literature addresses the optimal conditions to activate
dual-connectivity between two different mobile technologies
viz a viz 4G and 5G. Moreover, RLF instances in context of
dual-connectivity have not been studied extensively either.

RLF is the temporary radio link disruption from the serving
cell either due to poor signal strength or quality, or because
of incorrect handover (HO) configuration. Most of the RLF
related literature [8]–[11] addresses intra-frequency HO issues
by controlling the system common parameters. For example,
in [8], time-to-trigger (TTT) and HO margin are adjusted
based on type of RLF observed during HO. Similarly, [9]
considers tuning A3-offset to prevent RLF between intra-
frequency neighbors. Authors in [10] categorize HO failure
into too early, too late and wrong cell HO to adjust TTT and
A3-offset accordingly.

Apart from optimizing intra-frequency HO parameters, au-
thors in [11] propose transmission power changes to adjust
coverage holes. RLF detection approach in [12] uses RF
threshold to detect possible RLF situation and accelerates HO
to a better cell if available. However, the mechanism of setting
appropriate RF threshold, is not defined.

Most of the RLF prevention approaches in literature target
intra-frequency HO optimization and do not discuss actual
measurement thresholds to detect possible RLF. There is a



Figure 1: High Level overview of the proposed AI-Enabled EN-DC activation.

need to devise an approach to detect potential RLF threshold
(signal strength and quality) and utilize that information to
configure optimal inter-RAT parameters for EN-DC activation.

B. Contribution

The importance of minimizing RLF to maintain QoE can
not be overemphasized, and several studies have already
analyzed the RLF problem as explained earlier. To the best
of the authors’ knowledge, this is the first study to leverage
real network data measurements for devising a model to
predict potential RLF. Potential RLF thresholds are obtained
by taking into account the 3GPP [13] based low level mea-
surements (N310, T310, maximum RACH attempt, maximum
RLC retransmission). We use data labelled as potential RLF
instead of focusing only on the actual RLF to minimize the
data imbalance problem and to incorporate the problematic
instances that lead to actual RLF. Moreover, we use Tomek
Links approach to further increase the classification accuracy
for the AI model developed to predict the potential RLF cases.
A deep learning based model is designed and trained to predict
potential RLF and consequently determine a suitable EN-DC
activation configuration. The proposed RLF prediction aware
activation method for EN-DC mode ensures that the benefits
of higher throughput and low latency can be achieved via the
optimal use of EN-DC without compromising the UE QoE
due to RLF at either LTE or 5G network.

The rest of the paper is organized as follows. Section
II provides brief description of 3GPP standard based EN-
DC mode and RLF trigger. Real LTE network measurement
data recording, exploration and development of Artificial
Intelligence (AI) model to predict potential RLF is presented
in Section III. Since the RLF criteria is same in LTE and 5G
NR, the learned AI model is applicable for both LTE and 5G
NR. Simulation data in Section IV shows how MDT data can

be used to determine suitable EN-DC activation configuration
parameters while minimizing chances of RLF by making use
of the AI based RLF prediction model developed in Section
III. Section V concludes the paper.

II. BACKGROUND

A. EN-DC in 3GPP Release 15

A major focus of 3GPP Release 15 [2] is to get a first
incarnation of 5G into the field that complements 4G LTE.
Primarily due to the higher frequency bands standardized in
5G networks, it is deemed better to enable UEs to connect
simultaneously to LTE and 5G New Radio (NR). This is
referred to as Dual Connectivity option 3X or E-UTRAN New
Radio Dual Connectivity (EN-DC).

UE traditionally camps on LTE eNB, referred to as the
Master Node (MN) in EN-DC. Later on, the network may
attempt to initiate EN-DC if the UE initiates the services
that can be benefited by EN-DC, and if both the UE and
network supports EN-DC mode. First, the MN sends the EN-
DC configuration with the target 5G frequency and event B1
measurement criteria to the UE.

EN-DC capable UE then starts measuring RF condition of
the target EN-DC frequency as configured by the MN. UE
sends event B1 to the MN if as per the configuration the
Reference Signal Received Power (RSRP), Reference Signal
Received Quality (RSRQ) or Signal to Interference and Noise
Ratio (SINR) of the 5G cell becomes better than the threshold.
Event B1 encapsulates RSRP of the MN, and RSRP and SINR
of the target 5G cell. MN can apply further filtration on the RF
information inside the received B1 report. MN communicates
with the 5G gNB and EN-DC is activated after the admission
control check and capability enquiry. 5G gNB upon EN-DC
activation is referred to as Secondary Node (SN). UE can
now benefit from the services provided by both LTE and 5G



network as long as the RF condition of both networks is good
otherwise RLF followed by service disruption is observed.
Note that signaling is provided to the UE by MN only, hence,
LTE RF condition need to be good as well.

B. Radio Link Failure in 3GPP

The event where UE abnormally detaches its connection
with the serving cell is known as RLF. RLF procedure in 5G
networks is same as in LTE, and is described here.

RLF is observed when either of the following three condi-
tions are met consecutively for a certain period. Each of the
RLF condition is controlled by one or more parameters.

• Upon timer T310 expiry after configured consecutive out-
of-sync indication represented by N310 counter.

• After the configured number of consecutive unsuccessful
RACH attempts have been reached.

• When the configured number of consecutive RLC re-
transmissions have been reached.

Parameters corresponding to each condition are incremented
every time the underlying problem is observed, and RLF
is observed upon fulfilment of the threshold condition. A
network operator may configure a higher threshold to avoid
RLF. However, in that case, UE will be stuck in the poor
RF conditions. Though RLF causes poor user experience
temporarily, it gives the UE under poor RF condition a chance
to reset its current struggling connection and camp on the cell
having a better coverage. Optimization of these RLF related
parameters to minimize the RLF are beyond the scope of
this paper and can be the subject of a future study. Here
we are interested in developing a model that can predict the
RLF failure and thus can be used for smart EN-DC activation
decision.

III. AI MODEL FOR RLF PREDICTION TO ENABLE SMART
EN-DC ACTIVATION

This section describes how actual measurement data from
a real LTE network is collected to develop a deep learning
based AI-model to help identify the set of RSRP and SINR
conditions that correspond to potential RLF. This model is
then used to help activate EN-DC mode after the MN receives
the RSRP and SINR of the MN and SN in the B1 report from
the EN-DC capable UE. Since the RLF criteria is same in
LTE and 5G NR, the proposed RLF prediction AI model is
applicable for both LTE and 5G NR. Fig. 1 illustrates the high
level overview of the proposed AI powered EN-DC activation
method.

A. Data Collection, Cleansing and Pre-Processing

Drive test is conducted for 13 hours and RSRP, SINR
measurement are recorded at an interval of 100ms. Moreover,
the low level RLF related parameters mentioned in Section
II-B are also registered. Out of the 0.45 million data samples
recorded, only 543 actual RLF (∼7 RLF every 10 minutes)
are observed. This data if used as it is to train a model can
lead to a poorly performing model due to the class imbalance
in the training data. For that reason, and to incorporate all the
chances of possible RLF, using domain knowledge we mark
those rows of the data as potential RLF where even though

Figure 2: Potential RLF occurrences versus the UE RSRP and SINR
measurements.

actual RLF is not observed but the underlying RLF parameters
showed abnormality.

Next, some of the RLF parameters were not received in
sync with the RSRP and SINR information, so empty cells
were filled in with the relevant RF information. Empty cells
were filled while keeping in view the correct serving cell
during the HO procedure. Fig. 2 shows the potential RLF
occurrences versus the UE RSRP and SINR measurements
recorded during the drive test. The tail of the scatter plot in
the bottom left area are poor RSRP samples due to late HO
instances, where UE is unable to perform HO to best cell due
to poor SINR. Ultimately, RLF occurs and UE camps on cell
with the best signal strength.
B. Ways to Address Data Imbalance Problem

We have used several approaches to address the problem
of accuracy paradox, where the high accuracy of machine
learning model is driven by the majority class, and the
minority class shows poor performance. In our case, minority
class is the more significant potential RLF class, and hence,
data imbalance problem should be addressed. Now, we will
briefly discuss some approaches to address data imbalance
problem.

• Random over-sampling randomly duplicates observations
from the minority class to reinforce its signal.

• Synthetic Minority Oversampling Technique (Smote)
synthesises new minority instances.

• Random under-sampling randomly removes observations
from the majority class.

• Near Miss is the synthetic under-sampling of the minority
class. Near Miss selects examples from the majority class
that have the smallest average distance to the three closest
examples from the minority class.

• A pair of data instances (a and b) belonging to different
classes is called a Tomek link (a,b) if there is no instance
c such that the distance d(a, c) < d(a, b) or d(b, c) <
d(a, b). Instances participating in Tomek links are either
borderline or noise so both are removed.

• Edited Nearest Neighbor Rule (ENN) removes any in-
stance whose class label is different from the class of at
least two of its three nearest neighbors.

• Neighborhood Cleaning Rule (NCL) checks three nearest
neighbors of each instance belonging to majority or



Table I: Accuracy and F-1 score of the minority class (potential RLF class) for various data-imbalance resolution techniques.

Classification
Algorithm Metric Raw

Data
Random

over sampling Smote Random
under sampling Near Miss Tomek

Links ENN NCL

Regression Accuracy 97.3% 88.1% 88.8% 87.9% 95.3% 97.3% 97.1% 97.1%
KNN Accuracy 97.6% 97.6% 95.3% 97.6% 87.6% 97.5% 87.6% 97.2%
SVM Accuracy 97.4% 88.9% 88.3% 88.6% 92.2% 96.6% 92.2% 97.1%
Naive Bayes Accuracy 96.6% 88.1% 89.6% 96.6% 95.2% 96.6% 95.2% 96.3%
XGBoost Accuracy 97.6% 93.1% 91.3% 91.3% 78.4% 97.6% 97.3% 97.3%
Decision Trees Accuracy 96.9% 98.3% 89.5% 89.5% 47.6% 96.9% 96.2% 97.2%
Random Forest Accuracy 97.6% 98.4% 92.6% 92.6% 57.5% 97.6% 97.1% 97.2%
Deep Learning Accuracy 97.4% 88.9% 88.1% 88.8% 91.2% 98.4% 96.9% 97.9%
Regression F1 0.75 0.88 0.94 0.88 0.68 0.74 0.74 0.74
KNN F1 0.78 0.78 0.68 0.78 0.44 0.78 0.44 0.77
SVM F1 0.78 0.78 0.68 0.78 0.44 0.78 0.44 0.74
Naive Bayes F1 0.7 0.88 0.5 0.7 0.66 0.7 0.66 0.69
XGBoost F1 0.78 0.93 0.91 0.91 0.31 0.78 0.78 0.78
Decision Trees F1 0.75 0.94 0.9 0.9 0.16 0.81 0.73 0.74
Random Forest F1 0.79 0.95 0.92 0.92 0.2 0.88 0.78 0.79
Deep Learning F1 0.74 0.88 0.88 0.88 0.32 0.95 0.8 0.81

minority class, and removes them if the neighboring data
instances are mis-classified, then those nearest neighbors
are removed.

Now, we will talk about the training, testing and validation
of the machine learning algorithms evaluated after applying
the data imbalance resolution approaches discussed above.
C. Model Building and Validation

The prepared data was scaled and later used to train and
test several AI techniques for creating a best performing model
for RLF prediction as function of observed RSRP and SINR.
The gathered data is periodically split into a 30:70 ratio of
training and test dataset. The classification based machine
learning models using KNN, decision trees, regression, deep
learning etc. are developed and evaluated. Table I shows the
accuracy and F1 score of minority class (potential RLF class)
for various machine learning models trained on the same data
to predict RLF. F1 score observed for majority class for all the
machine learning algorithms is higher than 0.9 and has been
not included in Table I. Deep learning with data imbalance
problem addressed by Tomek links shows the best results
in terms of both accuracy and F1 score. Tomek Links work
on the class boundary to help slightly improve the isolation
between the overlapped classes by removing majority samples
at the border area.

Deep Neural Network algorithm belongs to a special class
of machine learning, called deep learning and creates a multi-
layer perceptron to find the input-output associations. Its basic
structure consists of an input layer, output layer and one or
more hidden layers between them, each containing several
neurons (or nodes). Neurons in the input layer equals the
number of input features, whereas output layer consists of
one neuron which holds the prediction output. Number of
hidden layers and its neurons are variable, and depends on
the complexity of model it is trying to learn. Deep learning
model with a variety of hyper-parameters to prevent under-
or over-fitting were tried as shown in table II. Best result
is obtained using deep learning model with fully connected
three hidden layers having 16, 16 and 8 neurons respectively
as shown in the Fig. 3. The model was learned using epoch
size of 50 and batch size of 1.

Table II: Deep Learning Hyperparameters
Hyperparameter Name Search Range/Value
DNN depth d {1,2,3,5}
DNN width w {5,8,10,16}
Activation Function (Hidden Layers) Relu
Activation Function (Output Layers) Sigmoid
Optimizer Adam (Gradient Descent)
Loss Metric Binary Cross Entropy

Figure 3: Structure of the deep learning model used for the training,
testing and validating of the processed data.

D. Suitable EN-DC parameters
This subsection explains how we can use MDT data from a

real network to devise a smart EN-DC activation scheme. The
goal is to maximize the chances of EN-DC trigger, but at the
same time avoid chances of RLF for both LTE and NR. The
input MDT data from 4G LTE and 5G NR can be fed into
the AI model to predict the potential RLF instances for both
LTE and NR. We then apply several combinations of RSRP
and SINR parameters to evaluate the configured parameters
in terms of potential RLF.

Since Minimization of Drive Test (MDT) data is currently
unavailable in the existing networks, particularly due to huge
data and processing requirements, we evaluate our proposed
model using a state of the art 3GPP compliant cellular network
simulator called SyntheticNET [14].

IV. SIMULATION RESULTS

This section first discusses the network deployment spec-
ifications used in the SyntheticNET simulator [14], followed



Table III: Simulation Details
Technology 4G LTE 5G NR
Frequency 2.1GHz 3.5GHz
Cell Type Macro Cell Small Cell
Antenna Type Directional Omni (for hotspots)
Number of Cells 27 16
Transmit Power 40dBm 30dBm
Base Station Height 30m 20m

Figure 4: RSRP plot of deployed 4G and 5G network.

by EN-DC activation criteria. The measurements from the
simulator are fed into the AI model to reveal potential
RLF scenarios. Finally, we elucidate the proposed scheme to
determine the smart EN-DC activation criteria.

A multi-RAT (Random Access Technology) network with
nine macro LTE eNBs each having three sectors, and sixteen
higher frequency omni directional 5G gNBs are deployed in
a square of 25km2 area. LTE eNBs are laid out uniformly
in a grid form, while 5G small cells are deployed randomly
representing hotspot locations. A total of 300 mobile UEs
traverse the area following random way point mobility model.
RSRP plot of the deployed network is shown in the Fig. 4.
Speed of the users is set to 120km/h and the simulation run
for 12,000ms. More detail about the network configuration
can be found in Table III.

UEs are configured to measure RF condition of 5G gNB
every 0.5s, and B1 measurement report is sent to the MN if the
B1 criteria is met. B1 configuration can be varied to increase
the number of B1 reports. This leads to an increase in EN-
DC activation rate. However, the number of RLF at either
LTE or 5G side increase as well. This relationship between
number of B1 reports and potential RLF occurrences has been
shown in Fig. 5. Fig. 5 signifies the need for a smart EN-DC

Figure 5: Number of UE generated B1 reports (EN-DC activation
requests) against RSRP threshold.

activation scheme i.e.,the importance of optimally assigning
B1 threshold. An incorrect B1 threshold may deteriorate
retainability Key Performance Indicator (KPI) through large
number of RLF instances at either LTE or 5G side.

For demonstration purposes, we set B1 configuration as -
120dBm for RSRP, which ensures that the UE will send B1
report to the MN if 5G gNB RSRP is more than -120dBm. B1
threshold of -120dBm generates 7206 B1 reports as shown in
Fig. 5. RLF occurrences is minimized by having another check
at MN before initiating EN-DC activation process. Event B1
report encapsulates RSRP of MN, along with RSRP and SINR
of 5G gNB. Note that SINR reporting is supported by 5G NR
and not by 4G LTE.

Next, the MN also applies another condition on RF mea-
surement reported by UE in the B1 report. This is an optional
condition not defined by 3GPP, but vendors can implement it
to ensure that both RSRP and SINR of both technologies are
above certain thresholds. In this way, QoE can be guaranteed
by minimizing RLFs.

Now we explain the procedure to define the LTE RSRP,
5G RSRP and 5G SINR threshold by taking into account the
potential RLF predicted by the AI model. Note that its not
necessary to implement all three thresholds, and only one or
two thresholds can be implemented at MN for triggering EN-
DC mode.

Fig. 6, 7 and 8 shows the statistics of successful SN addition
(EN-DC activation) by varying 5G SINR, 5G RSRP and LTE
RSRP thresholds described earlier. Upon receiving B1 report
from EN-DC capable UE, MN checks for the configured
threshold(s). MN communicates with with SN for EN-DC
activation only if the RF condition as reported in the B1
report is higher than the configured threshold(s). For example,
if configured thresholds are -100dBm and -90dBm for LTE
RSRP and 5G RSRP respectively, MN will attempt to add
SN only if the RSRP values for LTE and 5G is higher than
-100dBm and -90dBm irrespective of 5G SINR.

Fig. 6 shows that without any threshold configured at
MN, there will be 7206 EN-DC activations (same as B1
reports send by UE). However, 2403 out of the 7206 EN-
DC activations may be followed by RLF. As we configure
SINR condition at MN, the number of potential RLF oc-
currences decrease. This trend becomes more prominent as
SINR threshold is increased. However, the number of SN

Figure 6: Effect of 5G SINR threshold on successful EN-DC activa-
tions (constant 5G and LTE RSRP thresholds of -120dBm).



Figure 7: Effect of 5G RSRP threshold on successful EN-DC
activations (with constant 5G SINR and LTE RSRP thresholds of
0dB and -120dBm respectively).

Figure 8: Effect of LTE RSRP threshold on successful EN-DC
activations (with constant 5G SINR and RSRP thresholds of 0dB
and -120dBm respectively).

addition attempts decreases as well. SINR threshold should
be configured while keeping this trade-off in mind. For the
particular scenario analyzed in this study, we can use SINR
threshold of 0dB since the number of SN attempt is large and
potential RLF occurrences are few.

Potential RLF occurrences can further be decreased by
having configured the 5G RSRP and or LTE RSRP threshold
at MN. Fig. 7 and 8 illustrate the impact of changing 5G
RSRP threshold and LTE RSRP threshold respectively. 5G
RSRP can be set as -110dBm to achieve 2922 SN additions
with just 14 potential RLF occurrences (Fig. 7). This gives
a 99% reduction in RLF occurrences. Conversely, we can set
5G RSRP threshold as -120dBm (same as B1 threshold) and
can assign LTE RSRP threshold as -110dBm to have 3283
SN addition attempts. However, with this case, 292 RLF are
observed.

V. CONCLUSION

EN-DC mode addresses strict QoE requirements of the UE
by enabling multi-connectivity to 4G and 5G cells. However,
multi-connectivity can be beneficial only if the RF condition
of participating 4G and 5G cells are above a certain threshold.
Currently, there does not exist EN-DC mode selection scheme
in literature that takes into account the risk of RLFs. This
paper proposes a smart EN-DC triggering scheme by which
RLF due to poor RF conditions can be minimized. The scheme
works by selecting the best B1 thresholds based on insights

from a Deep learning based AI model to predict RLF. The
core RLF prediction model is developed, trained and vali-
dated using real networks measurements of RSRP, SINR and
underlying 3GPP based RLF related parameters. The value of
these low level parameters are used to identify potential RLF
against RSRP, SINR values. We use Tomek Links approach to
enhance the classification accuracy. Simulation results based
on a state of the art 3GPP compliant network simulator show
that for the presented network deployment, compared to no
smart conditioning on EN-DC i.e. without using proposed
scheme, RLF can be reduced from 2403 cases to just 14
potential RLF cases when using 5G SINR and RSRP threshold
of 0dB and -110dBm respectively as per proposed scheme.
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