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ABSTRACT The exponential rise in mobile traffic originating from mobile devices highlights the need for 
making mobility management in future networks even more efficient and seamless than ever before. Ultra-
Dense Cellular Network vision consisting of cells of varying sizes with conventional and mmWave bands is 
being perceived as the panacea for the eminent capacity crunch. However, mobility challenges in an ultra-
dense heterogeneous network with motley of high frequency and mmWave band cells will be unprecedented 
due to plurality of handover instances, and the resulting signaling overhead and data interruptions for 
miscellany of devices. Similarly, issues like user tracking and cell discovery for mmWave with narrow beams 
need to be addressed before the ambitious gains of emerging mobile networks can be realized. Mobility 
challenges are further highlighted when considering the 5G deliverables of multi-Gbps wireless connectivity, 
<1ms latency and support for devices moving at maximum speed of 500km/h, to name a few. Despite its 
significance, few mobility surveys exist with the majority focused on adhoc networks. This paper is the first 
to provide a comprehensive survey on the panorama of mobility challenges in the emerging ultra-dense 
mobile networks. We not only present a detailed tutorial on 5G mobility approaches and highlight key 
mobility risks of legacy networks, but also review key findings from recent studies and highlight the technical 
challenges and potential opportunities related to mobility from the perspective of emerging ultra-dense 
cellular networks. 

INDEX TERMS 5G cellular networks, network densification, mobility prediction, mmWave band, 
reliability, latency, multi-connectivity, user tracking, cell discovery, energy efficiency.

I. INTRODUCTION 
The unprecedented rise in the Internet traffic volume seen in 
recent years is attributed to high speed internet, and the 
advent of smart phone technology. It is anticipated that the 
number of 5G subscriptions will be 2.8 billion by the year 
2025 [1]. Furthermore, the insatiable demand for new 
bandwidth-hungry applications will lead to an avalanche of 
traffic volume growth. Mobile data traffic will increase from 
10.7 exabytes/month in 2016 to 83.6 exabytes/month by 
2021 [2], and that number will further increase exponentially 
in the years to follow. 
The emerging cellular networks including 5G mobile 
network standard as the next revolution of mobile cellular 
technology needs to support the ever-increasing mobile 

users, provide adequate data rate for the bandwidth hungry 
applications, address the QoS issues of delay tolerant 
applications and realize the concept of Internet-of-Things 
(IoT) [3] [4]. 5G promises to deliver “more” of everything 
[5]: a) top speeds of up to 1 Gbps, b) 100 Mbps data rate per 
end user even at the cell edge, c) RTT (Round-Trip-Time) 
latencies in the millisecond range, d) higher connection 
densities (1 million connections per km2 [6]), and e) support 
for mobile devices at the speed of up to 500 km/h. 
Currently, Signal to Interference and Noise Ratio (SINR) is 
considered as the primary metric for planning, dimensioning 
and optimization of the existing cellular networks [3]. 
However, for a few exceptions like fixed IoT services, an 
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additional network planning/design criterion in the future 
may be the mobility related QoE. This is likely the outlook 
in the backdrop of the following observations:  
1) Coverage and SINR provisioning will become a relatively 

easy challenge given the anticipated higher Base Station 
(BS) density in emerging cellular networks, along with the 
sophisticated interference management schemes and 
massive MIMO assisted beamforming. 

2) However, the very same advances in the network design 
i.e. densification, beamforming, massive MIMO make the 
mobility management a more challenging problem. The 
challenges stem not only from the increased number of 
handovers (HOs) but also, beam management to maintain 
the expected QoE. Challenges related to beam 
management includes focusing narrow beams on the 
mobile users, cell discovery in narrow beam cells, and 
large signaling overheads when the user moves from one 
massive MIMO cell to another cell. 

3) With the advent of mmWave, narrow beams of mmWave 
bands will have limited overlap with each other, making 
HO a challenging problem (see Fig.4 for observing the 
difference in HO scenarios in low frequencies and 
mmWave frequencies). 

The growing demand for mobile services in public transport, 
highways, open-air gatherings etc. [7] will be critical to 
customer experience. Providing a satisfactory Quality of 
Experience (QoE) to a relatively large number of mobile 
users and a miscellany of the devices including phones, 
tablets, sensors etc. at the speed up to 500km/h imposes 
extreme challenges to the future mobile networks. Mobility 
requirements in emerging cellular networks require high 
efficiency of the HO mechanism, which makes the cell-
change seamless for the users. Unlike the legacy 
technologies (i.e. 3G and 4G) that do not give primary 
importance to high mobility, future mobile networks will 
treat mobility as an integral part of the communication 
standard. Moreover, the mobility management schemes in 
Long Term Evolution (LTE) systems (also known as 4G 
system) and to a certain extent, even in the latest 5G New 
Radio (NR) standard are not well adapted to the typical 
deployment of the futuristic mobile networks due to multiple 
factors, few of which are highlighted below: 
 
 The legacy LTE architecture makes use of a centralized 

network control entity called MME (Mobility 
Management Entity) located in the core network. The 
emerging cellular networks are expected to have 10-folds 
higher density [8], with a larger fraction of mobile users. 
Thus, without a mobility centric redesign of the 
architecture, future networks should have 10 times more 
MME’s just to achieve a similar QoS as in LTE. 

 To achieve the logistic feasibility for high density 
deployment, BS placement in future mobile networks are 
likely to be impromptu or much less planned [8]. This will 

increase mobility related signaling load that is bound to 
complicate the core network management and planning. 

 HO decision in existing networks is made by participating 
BSs without considering the deployment of the BSs and 
backhaul limitations. In futuristic mobile networks with 
flexible BS deployment, the chances of User Equipment 
(UE) in selecting the optimal target BS may become 
smaller. 

 While the capacity crunch will be addressed by small-cells 
(SC), a large number of inter-SC HOs will take place 
leading to frequent session interruptions during HO. 

 With smaller inter-site-distance as in SCs, the performance 
of the existing mobile network reduces sharply owing to 
the risk of HO failures due to high radio link variability as 
shown in [9].  

 In existing mobile networks, UE context has to move from 
one BS to another for every HO. This will impose 
unprecedented signaling overhead in the future ultra-dense 
network architecture. While signaling is already growing 
50% faster than data traffic [10], network efficiency will 
drop by many folds using the current HO approaches.  

 HOs in 4G networks are based on the broadcast signal 
called Reference Signal (RS). The mmWaves with narrow 
beams cannot have RS broadcast to the whole coverage 
area within the cell range. Hence, cell discovery, especially 
for mobile UEs is another key mobility challenge in 
emerging cellular networks not faced by the traditional 
mobile networks. 

 With SON stepping up the automatization of network 
configuration and optimization in LTE, myriad of mobility 
management parameters associated with the large number 
of closely deployed 5G BSs need to be well managed. For 
that, the existing SON solutions will not be sufficient.  

 5G applications with Ultra Reliable Low Latency 
Communications (URLLC) e.g. self-driven cars demand 
very low latency requirements as shown in Table I [11].  

 When UE perform HO to a better cell, it experiences a 
latency and data interruption period. HO management in 
the future mobile networks should ensure a seamless and 
latency-free transition from the source to the target cell.   

 With mobile phone traffic on the rise, and with the advent 
of self-driven cars and drones needing robust connectivity, 
seamless and reliable mobility management has become 
more significant than ever. The adaptation of ultra-dense 
cellular networks and mmWave BSs makes the mobility 
management even more complex challenge requiring 
significant research effort. 

TABLE I 
COMPARISON OF LTE LATENCY WITH 5G EXPECTED GOALS 

Parameter LTE Requirement 5G Target 

Control Plane Latency 
(Accessibility) 

100ms 10ms 

User Plane Latency 20ms 1ms 

HO Execution 49.5ms 0ms 
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In light of the above discussion, we can conclude that mobility 
management will have much stronger impact on the design 
and architecture of upcoming cellular networks, than it had on 
the legacy networks. The futuristic networks will incorporate 
high mobility requirements as an integral part, and appreciable 
efforts are required to attain ubiquitous top-notch QoE. 
Majority of mobility oriented surveys in the literature target 
adhoc networks [12] [13] [14]. Mobility surveys on cellular 
networks do exists e.g. Xenakis et al. [15] presented survey on 
HO decision algorithms for the femtocells in LTE-Advance. 
Another survey on high mobility wireless communication has 
recently been presented in [16], however, the attributes and 
intricacies of the 5G architecture have not been addressed. To 
the best of the authors’ knowledge, this survey is the first to 
address the novel contributions by research community 
targeting mobility in emerging ultra-dense mobile networks. 
The contributions in this paper and its organization are as 
follows: 

 To the best of the authors’ knowledge, this paper gives the 
first comprehensive tutorial on 3GPP based 5G mobility 
management procedures for both a) idle/inactive mode, 
and b) connected mode mobile users.  

 Mobility related surveys do exist in the literature (e.g. [12] 
[13] [14] on adhoc networks), but none of the 
aforementioned surveys addresses the futuristic mobile 
networks. This paper presents a single go-to manuscript 
where future researchers not only understand the 3GPP 
mobility procedure and the existing mobility related 
literature but also assist them in finding the research 
directions they might undertake. 

 It presents a first of its kind framework to correlate all 
mobility management related parameters with all mobility 
management related KPIs. To facilitate easy 
understanding, this framework is presented in the form of 
a flow chart shown in Fig. 8. 

 It presents a comprehensive and taxonomized review of the 
literature on mobility management. 

 
 
FIGURE 1. Layout of the contents and paper contributions.  
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 It identifies the need for a new paradigm for mobility 
management deemed essential to meet the quality of 
experience (QoE) requirements of the emerging 
applications and use-cases. 

 It proposes a novel proactive mobility management 
framework to meet the requirements of the emerging 
mobile networks. Since the challenges of 5G networks 
(e.g. low latency, less overhead and high quality of 
experience) cannot be addressed by the current reactive 
mobility management techniques, we discussed the 
proactive mobility management in section IV.  

 It highlights the need to come up with Mobility oriented 
Network planning and dimensioning 

 It provides a collection of the latest AI-based techniques to 
smartly address mobility related challenges. 

 It identifies the future research direction and few open 
research problems to achieve this paradigm shift. 

Fig. 1 outlines the structure of the paper. It also provides a 
taxonomy of the literature on mobility. 
II. UNDERSTANDING MOBILITY IN CELLULAR 
NETWORKS 
Mobility in cellular networks plays a pivotal role ensuring an 
optimal experience to the subscribers. It guarantees that 
mobile users won’t just be able to maintain connectivity but 
attain the best available connection to the network as they 
move towards the destination. Seamless and timely HO and 
cell reselection has always been a major challenge in any 
wireless communication systems including 5G. Mobility has 
been categorized as Idle and Connected Mode Mobility in 5G. 
Note that the mobility procedure in LTE (4G) is very similar 
in 5G New Radio (NR) using events A1, A2, A3, A4, A5 and 
A6 to trigger HOs. Event A2 and A1 are triggered when RF 
condition of the UE falls below and exceeds the configured 
threshold respectively and are used to start and stop inter-
frequency neighbor search. Intra-frequency HO is initiated by 
event A3 where the neighbor RF condition becomes higher 
than serving RF condition by a configured threshold. Event A4 
and A5 are typically used for inter-frequency HO where target 
inter-frequency cell has to be higher than an absolute threshold 
for the event A4 to be triggered. On the contrary, event A5 in 
addition to event A4 condition, requires serving cell RF 
condition to be below a certain threshold. Finally, event A6 is 
similar to event A3 but is used for intra-frequency HO of the 
secondary frequency the UE is camped onto. Event A4 and A5 
can also be used for conditional HO management for e.g. for 
load balancing. In addition to the events described above, 
event B1 and B2 (A4 and A5 alike) are also used for inter-
technology HO, and for dual-connectivity, but they are not 
discussed here to keep the focus of this paper confined to basic 
mobility procedures and the associated challenges. 
The only difference between 5G and 4G mobility criteria is in 
the idle mode where respective idle mode reselection 
parameters in 5G NR are present in different SIB# than in 
LTE. Moreover, the idle mode parameter names and 
functionalities in 5G are similar as in 4G. Comprehensive 

explanation of 5G mobility procedure while keeping in view 
the 5G network architecture and interfaces is presented in the 
following subsections.  

A. IDLE MODE MOBILITY 
UE is in idle mode when it is neither running any active 
communication service nor is connected to any particular cell. 
UE in idle mode is constantly trying to search and maintain 
services such as Public Land Mobile Network selection, cell 
selection and reselection, location registration, and reception 
of system information. By maintaining an idle mode 

TABLE II 
LIST OF ACRONYMS 

Acronym Description 

3GPP Third Generation Partnership Project 
4G Fourth Generation 
5G NR Fifth Generation New Radio 
AMF Access & Mobility Function 
BS Base Station 
CDR Call Detail Record 
CIO Cell Individual Offset 
CoMP Co-Ordinated Multi Point 
CQI Channel Quality Indicator 
CSI Channel State Identifier 
gNB 5G Base Station (Next Generation NodeB) 
HF High Frequency 
HO Hand Over 
HOM Hand Over Margin 
IMMCI Idle Mode Mobility Control Information 
ICIC Inter Cell Interference Coordination 
IoT Internet of Things 
KPI Key Performance Indicator 
LB Load Balancing 
LoS Line of Sight 
LTE Long Term Evolution (4G) 
MLB Mobility Load Balancing 
MME Mobility Management Entity 
MR 
MRO 

Measurement Report 
Mobility Robustness Optimization 

MIMO Multiple Input Multiple Output 
MDT Minimization of Drive Test 
NLoS Non-Line of Sight 
PCI Physical Cell Identifier 
P-GW PDN Gateway 
QoE Quality of Experience 
RAT Random Access Technology 
RRC Radio Resource Control 
RTT Round Trip Time 
RS Reference Signal 
RSRP Reference Signal Receive Power 
RSRQ Reference Signal Receive Quality 
RSSI Receive Signal Strength Indicator 
RwR Release with Redirect 
RLF Radio Link Failure 
SC Small Cell 
SINR Signal to Interference plus Noise Ratio 
S-GW Serving Gateway 
SON Self-Organizing Networks 
SDN Software Defined networking 
SIB System Information Base 
TA Tracking Area 
TAL Tracking Area List 
TAU Tracking Area Update 
UPF User Plane Function 
UE User Equipment 
URLLC Ultra-Reliable Low Latency Communication 
UDN Ultra-Dense Cellular Networks 
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connection, UE can readily establish a Radio Resource 
Connection (RRC) for signaling or data transfer as well as be 
able to receive any possible incoming connections. 
UE always powers ON in idle mode and selects the cell with 
the maximum signal strength through a process known as cell 
selection. However, this initially selected cell will not always 
be the best to serve especially when UE moves from one place 
to another. Therefore, to maintain the quality of signal, UE has 
to camp on another optimal cell, a process known as cell 
reselection. 

1) CELL RESELECTION CRITERIA 
In 5G, BS broadcasts nine System Information Block (SIB) 
messages for the UE as defined in 3GPP [17]. Out of those 
messages, SIB 1, 2, 3 and 4 contain critical parameters to 
execute idle mode cell reselection to the optimal 5G cell. SIB1 
has the serving cell parameters as well as the cell selection 
parameters, while SIB2 has the common parameters used for 
intra-frequency and inter-frequency reselection. SIB3 is 
dedicated to intra-frequency reselection parameters, however, 
operators can broadcast the related parameters in SIB2 instead, 
and thus SIB3 is not broadcasted. SIB4 contains inter-
frequency reselection through target frequency priority and the 
associated parameters. Fig. 3 illustrates a pictorial 
demonstration of the reselection conditions and evaluation in 
5G as described by 3GPP. Description of the related 
reselection parameter, and the respective location (SIB#) can 
be found in Table III. LTE uses the same reselection procedure 
with the only difference that the contents of SIB2, SIB3 and 
SIB4 in 5G are found in SIB3, SIB4 and SIB5 of LTE instead. 

2) USER TRACKING 
The idle mode mobility of the UE is the responsibility of 
Access and Mobility Function (AMF) at the Tracking Area 

(TA) level for RRC idle mode users and at the RAN 
Notification Area (RNA) for RRC inactive mode users. Here 
we only talk about the idle mode users as the mobility 
procedure in 5G is similar for RRC idle mode and RRC 
inactive mode users. Note that unlike the connected mode, 
network is unaware of cell-level UE location in idle mode. 
After powering ON, UE acquires the Tracking Area List 
(TAL) composed of a list of TA codes through the periodic 
SIB1 broadcast from the cell. As UE traverses through the 
network while performing cell reselection procedure, it 
compares the TA code of the new cell with its own TAL. If 
the TA code of a newly visited cell does not match with its 
own TAL, it initiates TA Update (TAU) process to request 
AMF for location update as seen in the Fig. 3(a). TAU helps 
to track the UE in case of any incoming call. Bigger TA size 
reduces signaling overhead of TAU at the expense of larger 

TABLE III 
3GPP [17] INTRA/INTER-FREQUENCY RESELECTION PARAMETERS 

Parameter SIB# Description 

SIB - System Information Broadcast 

RSRP - Reference Signal Received Power 
RSRQ - Reference Signal Received Quality 
Qrxlevmin SIB1 Minimum RSRP threshold required to 

camp in idle mode 
Qrxlevmin SIB2 RSRPserving threshold required to compute 

intra-frequency reselection conditions  
Qoffsets,n SIB2 Positive or negative bias required to 

promote or avoid intra-frequency cell 
reselection to target cell 

* Idle Mode Cell Individual Offset 
Qhyst SIB2 RSRPtarget – RSRPserving required to satisfy 

intra-frequency reselection condition. 
Treselection SIB2 Time needed to satisfy intra-frequency 

reselection condition before actual 
reselection to the optimal cell 

SIntraSearchP/Q SIB2 RSRP/RSRQ threshold below which user 
searches for intra-frequency target cell 

Qrxlevmin SIB4 RSRPserving threshold required to compute 
inter-frequency reselection conditions  

Qqualmin SIB4 RSRQserving threshold required to 
compute inter-frequency reselection 

condition  
Qoffsets,n SIB4 Positive or negative bias required to 

promote or avoid inter-frequency cell 
reselection to equal priority target cell 

* Idle Mode Cell Individual Offset 
Qhyst SIB4 RSRPtarget – RSRPserving required to satisfy 

reselection condition to equal priority 
cell 

Treselection SIB4 Time needed to satisfy inter-frequency 
reselection condition before actual 

reselection to the optimal cell 
SnonIntraSearchP/Q SIB4 RSRPserving / RSRQserving threshold below 

which user searches for inter-frequency 
target cell 

ThreshX, LowP SIB4 RSRPtarget threshold required to trigger 
inter-frequency reselection to lower 

priority target cell 
ThreshServing, 

LowP 
SIB4 RSRPserving threshold required to trigger 

inter-frequency reselection to lower 
priority target cell 

ThreshX, HighP SIB4 RSRPtarget threshold required to trigger 
inter-frequency reselection to higher 

priority target cell 

 

 
FIGURE 2. 3GPP [17] cell reselection criteria based on SIB3 and SIB5 
parameter for intra-frequency and inter-frequency reselection 
respectively. 
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paging domain, ultimately resulting in higher paging-based 
downlink signaling load at network level. 

3) COMMON IDLE MODE MOBILITY RISKS 
In this subsection, we discuss about the common idle mode 
mobility risks in the existing LTE network. But since the 
mobility process is similar in 5G networks, 5G capable UEs 
are expected to face similar challenges.  
In idle mode, data transmission does not take place, therefore 
reliability and QoS are not the issues of concern. However, 
reselection procedure can incur accessibility and user tracking 
issues in rare occasions.  
During the network attach procedure, idle mode UE first sends 
connection request and awaits connection setup message from 
the BS. If UE does not receive any message from the BS 
within a predefined time (t300 timer known to UE via SIB2 
‘SIB1 in 5G [18]’), it restarts the accessibility procedure. 
Under special circumstances, if UE sends a connection request 
to the serving cell followed by reselection to a neighboring 
cell, it cannot receive the connection grant simultaneously. 
The new serving cell in this case does not become aware that 
the UE which just moved under its coverage needs to access 
the network. Thus, UE has to wait for a time defined in t300 
before re-initiating the access procedure in the new serving 
cell. During this time, UE experiences latency and can have 
serious impact on the applications requiring ultra-low latency. 
The delay can be suppressed by having smaller t300 timer, but 
at the cost of increased signaling load due to the increase in 
redundant connection requests and replies. Moreover, smaller 
t300 also negatively impact UE energy consumption (due to 
recurrent Random-Access Channel ‘RACH’ attempts). 
Repeated RACH attempts might result in higher Central 
Processing Unit (CPU) load of serving cell, especially at busy 
hour. 
Similar accessibility delay at TA border can result in paging 
failure, since the network can be unaware of the accurate UE 
location unless TAU followed by a successful accessibility is 
performed. 

TA planning is a crucial task and two approaches are used in 
existing networks: a) horizontal approach, b) vertical 
approach, as shown in Fig. 3(b). TAU procedure initiates for 
every inter-frequency reselection in horizontal approach, thus 
it is deployed where radio condition is good, and user is least 
expected to make recurrent inter-frequency reselection. On the 
contrary, poor radio condition area should have vertical 
approach to minimize TAU for inter-frequency reselection 
instances. Horizontal approach is favorable for high speed 
traffic like train lines or highways. One approach to address 
this issue in the existing cellular network is the use of adaptive 
TA codes, where users are configured with a list of TA codes 
to prevent ping-pong TAUs. However, determining the 
optimal number of TA codes in a list and the cumulative TA 
size still remain an open research problem. 

B. CONNECTED MODE MOBILITY 
UE is said to be in connected mode when it has established a 
connection with its peer Radio Resource Control (RRC) layer 
at the serving BS and the network can transmit and/or receive 
data to/from the UE. As there is an exchange of data between 

TABLE IV 
3GPP [18] HANDOVER PARAMETERS CONVEYED TO UE IN RRC 

RECONFIGURATION LAYER 3 MESSAGE 

Parameter Description 

s-Measure 
RSRP threshold below which user searches for optimal 

intra-frequency target cell 
Ofn Frequency offset for target cell 

Ofp Frequency offset for serving cell 

Ocn 
Target cell offset 

* Commonly known as Cell Individual Offset ‘CIO’ 
Ocp Serving cell offset 
Hys* Hysteresis to prevent ping-pong HOs 

A3-Off* 
RSRPtarget – RSRPserving offset required to satisfy A3 

condition 
A2-Thr* Event A2 RSRPserving threshold 
A1-Thr* Event A1 RSRPserving threshold 
A4-Thr* Event A4 RSRPserving threshold 
A5-Thr1* Event A5 RSRPserving threshold 
A5-Thr2* Event A5 RSRPtarget threshold 
timeToTrig
ger (TTT) 

Time for which Event (A1-A5) condition need to be 
satisfied before sending measurement report to the 

Base Station 
* Combination of (A1/A2/A3/A4/A5)-Thr(s) and respective Hys parameter
are used to define each event. 

 
FIGURE 3. (a) Tracking Area Update (TAU) procedure in LTE networks, 
(b) Common Tracking Area (TA) planning approaches. 

 
FIGURE 4. General HO procedure. (a) UE performs HO from cell A to 
cell B at cell-edge as it moves closer to the cell B. Scenario 1 and 2 
represents HF coverage and mmWave narrow beams,  (b) 3GPP [18] 
based intra-frequency HO process. 
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the UE and the BS, uninterrupted data transfer needs to take 
place for a seamless continuity of service when a UE moves 
from one BS to another BS. This ideally seamless mobility in 
connected mode is termed as handover (HO). 

1) UE SIDE MOBILITY TRIGGER 

UE triggers an intra-frequency HO request to the next optimal 
cell by sending A3-Measurement Report (MR) to its serving 
cell as shown in Fig. 4. The serving cell then decides whether 
to entertain the request and perform the HO, by 
communicating with the target cell and serving AMF. An 
intra-frequency HO is the first preference in cellular networks; 
however, there are instances in which an inter-frequency HO 

is the preferred choice. For example: a) when there is a 
coverage hole in the serving frequency, b) when the current 
serving cell does not support the requested service e.g. Voice 
over NR, and c) when load balancing is needed to avoid 
congestion in the serving frequency. In Fig. 5 we illustrate the 
3GPP [18] defined inter-frequency HO criteria. For a 
description of each HO parameter, refer to Table IV. 

2) NETWORK SIDE MOBILITY TRIGGER 
HOs are undoubtedly more complicated than cell reselection. 
Aside from the source and target cell, core entities which 
include Access and Mobility Function (AMF), Session 
Management Function (SMF) and User Plane Function (UPF) 
need to be updated as well. Depending on the scenario, data 
transfer and handling could pose several challenges. In normal 
cases, when AMF, SMF and UPF do not change during the 
HO, signaling is reasonable and it is termed Xn based HO. 

FIGURE 5. 3GPP [18] intra-frequency and inter-frequency handover 
criteria in LTE networks. 

 
FIGURE 6. Xn based handover without UPF re-allocation in 5G 

networks. 

 
FIGURE 7. Common Mobility Related Risks in 4G/5G networks. 
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Here, the Xn interface is used for the preparation phase of the 
HO. However, when the Xn interface does not exist between 
the participating cells, an N2 based HO is performed where 
cells use a longer path for communication. Signaling flow for 
the Xn based HO is illustrated in Fig. 6. 3GPP [18] named Xn 
as the interface used to connect 5G BSs directly, and N2 
interface is the logical interface between two 5G BSs 
connected through the core network (AMF). N2 interface is 
used if the direct Xn interface between the neighboring BSs 
do not exists. 

3) COMMON CONNECTED MODE MOBILITY 
RISKS 

Apart from the fast fading effect due to Doppler shift in 
physical layer, the mobile UE has to cope with several Layer 
3 issues as well, which can be eluded primarily by a timely HO 
and an optimal selection of the target BS. Some of the issues 
mobile UE experiences during inter-site mobility are 
presented in Fig. 7, with possible solution(s) in Table V. 

C. INTERPLAY BETWEEN MOBILITY KPI AND KEY 
PARAMETERS 

Network operators optimize their network by tuning a set of 
mobility related parameters, and then by observing the HO 
attempt, HO success and few other QoE KPIs affected by 
those modified network parameters. Few of the vital mobility 
related KPIs are outlined below: 
 User tracking KPI indicates the paging hit rate when users 

served under the TA are notified by an incoming call. The 
idle mode mobile user must update its location (via TAU) 
to the core network when it moves into the neighboring 
TA. By doing so, the respective TA is broadcasted with 
paging attempt messages in case of any incoming call. A 
delay in TAU can result in paging failure and reattempts. 

 Mobility oriented HO process or TAU trigger results in the 
control plane messages being sent in the air interface and 

in the core network. The percentage of network resources 
used by control plane are measured by signaling data KPI. 

 User terminal energy consumption e.g. during data 
delivery and location update, can be measured by the UE 
battery KPI. 

 Reliability (or retainability) KPI indicates the percentage 
of users that dropped the connection with their 
participating cells during the HO procedure. Majority of 
the HO failure instances are observed due to late HO 
attempts. 

 Ping-pong HO KPI point out the early HO occasions in a 
cell. UE undergoing ping-pong HOs leads to back-and-
forth HOs between the participating cells and can lead to 
higher signaling load and sometimes even low retainability 
KPI.  

 Cell discovery KPI measure the small cell camping rate 
each time a UE is configured with a cell search process. 
Timely cell discovery can result in more offloading 
opportunities, and hence, efficient utilization of the 
available resources. 

 Latency or data interruption KPI represents the delay UE 
observe during HO execution, paging attempt to success 
duration, accessibility etc. 

 Accessibility KPI for a given time interval represents the 
percentage of idle mode UEs that were able to successfully 
acquire network access. Accessibility KPI indirectly 
impacts latency and user tracking KPI under rare 
circumstances for mobile users.  

In most cases the KPI-parameter dependency is multi-pronged 
and leads to complex and often conflicting interplay between 
the KPIs and parameters. This interplay in the mobility KPI 
and the associated key parameters is summarized in Fig 8. The 
key challenges that arise from the convolved association 
between the mobility KPI and parameter [17] [18] are briefly 
described below: 
1: Smaller qHyst value accelerates reselection, as soon as the 
target cell RSRP becomes greater than serving cell RSRP. As 
a result, accessibility issues related to idle mode mobility (as 
discussed earlier in the section) can be addressed. However, 
too low of a qHyst can result in unnecessary reselection (for 
instance, to an over-shooting cell). 
2: Shorter Treselection will improve the accessibility KPI at 
the cell boundary due to timely reselection. However, too short 
Treselection will result in ping-pong reselection especially for 
stationary users (i.e. due to shadowing).  
3: Idle mode Cell Individual Offset (CIO) to accelerate or 
decelerate reselection towards a neighboring cell. (configuring 
a positive CIO towards a particular neighbor can accelerate 
reselection, and vice versa) 
4: Time window to evaluate mobility State [17] of a UE. 
Number of reselections made within this time window will 
dictate mobility state (normal, medium or high) of a UE. 
Reselection criteria is typically eased as mobility state changes 
from normal to medium or high.  

TABLE V 
COMMON HO ISSUES AND THEIR SOLUTIONS 

HO 
Issue 

Parameter Optimization 
Solution 

Possible Cons 

Late 
Intra HO 

i. Lower A3 offset, 
shorter TTT 

Prone to unwanted HO’s to 
non-target cells. 

ii. Positive CIO towards 
target cell 

Potential Ping-Pong 
between source and target 
especially for static users. 

Late 
Inter HO 

Higher A2, Accelerate 
A3/A4/A5, shorter TTT 

Prone to unwanted HO’s to 
non-target cells/layers. 

Wrong 
Intra HO 

i. Higher A3 offset, 
longer TTT 

May cause delayed HO to 
target cell. 

ii. Negative CIO towards 
wrong-target cell 

Stationary users might 
experience poor signal 

quality. 
Wrong 
Inter HO 

Lower A2, Delay 
A3/A4/A5, shorter TTT 

May cause delayed HO to 
target cell. 

Early 
Intra HO 

i. Higher A3, longer TTT 

May cause HO delay to 
target cell 

ii. Negative CIO towards 
target cell 

Early 
Inter HO 

Lower A2, Delay 
A3/A4/A5, shorter TTT 

Abbreviations: CIO = Cell Individual Offset, TTT = timeToTrigger, Intra 
HO = Intra-frequency hand over, Inter HO: Inter-frequency hand over. 
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5: Specify additional time period before UE can enter back to 
its normal mobility state with default reselection parameters. 
Recurrent mobility state change can be avoided by tuning this 
parameter.  
6: Number of cell change needed (ignoring similar cells) 
within 'parameter #4' before UE changes mobility state from 
normal to medium or high respectively.  
7: Scaling factor by which the default qHyst (parameter #1) is 
decreased when the mobility state is changed to medium or 
high.  
8: Scaling factor by which the default treselection (parameter 
#2) is decreased when the mobility state is changed to medium 
or high. 
9: Amount and location of RACH resources to ensure RACH 
success (providing adequate RACH resources, and avoiding 
RACH resource conflict between neighboring cells).  
10: Higher target power can increase chances of RACH 
success at first attempt (better accessibility KPI) at the cost of 
a) higher battery consumption and b) chances of increased 
uplink interference for neighboring cells. An optimal target 
receive power is vital for better network operations. 
11: Increase in the transmission power every time a RACH 
attempt fails. Higher step size can increase RACH success but 
with more battery consumption and vice versa. 
12: Maximum allowable UE RACH power - Increasing 
maximum allowable UE transmission improves RACH 
success probability but with high energy consumption. 
13: Improved accessibility to achieve a faster TAU can ensure 
accurate user tracking and prevent paging failure instances for 
mobile users.  

14: Reduce latency through faster accessibility for mobile 
users (e.g. fast reselection to best signal cell and appropriate 
power for RACH success). 
15: Smaller TA size will improve UE location estimate and 
will decrease the core network signaling due to smaller paging 
area. However, frequent TAU by mobile users will add radio 
access side signaling.  
16: Suitable TA design (horizontal/vertical assignment) based 
on coverage conditions and type of traffic (e.g. high speed 
UEs) to ensure accurate user tracking and minimize TAU and 
hence, conserve UE battery and network signaling load.  
17: Reducing TAU attempts for mobile users to conserve UE 
battery.  
18: Reducing TAU attempts for mobile users to lessen 
signaling load.  
19: Fast and efficient user tracking to reduce latency in 
accessing the network. 
20: Minimizing signaling helps avoid unnecessary 
transmission and the UE battery can be conserved. 
21: Higher cell search frequency will be beneficial to offload 
users to other cells. However, more battery will be consumed 
while searching. In addition, signaling load will increase every 
time a UE is configured with cell search procedure.  
22: Periodic search mode will reduce signaling data generation 
as search configuration will be transferred to UE just once. 
However, small periodicity will waste the UE battery, and a 
large periodicity might miss a suitable offloading opportunity. 
On the contrary, a smart aperiodic search mode (e.g. location 
triggered) will be efficient and will save battery but signaling 
will be generated with each search configuration.  
23: Signaling data generated for cell discovery purposes 
should be minimized.  

 
FIGURE 8. Relationship diagram for mobility related KPIs and their interplay with the associated network parameters (grouped in different colors) 

Source: [17] [18]  
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24: UE consumes battery during cell search, hence, cell 
discovery should be minimized with high hit rate.  
25: Timely cell discovery (intra-frequency) will prevent out-
of-service (unreachable UE) occasions and Radio Link Failure 
(RLF) can be prevented.  
26: Timely cell discovery (intra-frequency) will prevent 
recurrent re-transmissions and ultimately lead to Radio Link 
Failure at the cell edge.  
27: Timely cell discovery (intra-frequency) will ensure HO 
success especially for mmWaves and the UE will not observe 
Radio Link Failure.  
28: Smaller report interval (HO requests) will have more 
signaling data and battery utilization. However, the reliability 
KPI will improve as there will be more chances of BS being 
able to successfully receive and decode the HO request.  
29: HO offset/threshold can be tuned to achieve timely HO.  
30: Suitable hysteresis parameter will minimize chances of 
ping-pong HOs.  
31: Small timeToTrigger can result in ping-pong HOs (e.g. for 
non-mobile users), while long timeToTrigger can avoid the 
HO resulting in low reliability/retainability KPI (e.g. to 
overshooting cells). Similarly, high speed users should be 
configured with lower timeToTrigger to accelerate HO to cell 
with best RSRP. 
32: Frequency based CIO to accelerate or decelerate inter-
frequency HOs to all neighboring cell(s). Optimal CIO can 
prevent late and/or early HO.  
33: Relation based CIO to accelerate or decelerate intra/inter-
frequency HOs toward the configured neighboring cell(s). 
Optimal CIO can prevent late and/or early HO.  
34: Configuring a large CIO range can avoid the chances 
MRO assigns a large CIO (a large CIO is not recommended as 
it can have negative consequences especially for static users)  
35: Shorter MRO cycle can recommend suitable CIO 
configuration based on changing traffic conditions. However, 
too short of a cycle should be prevented as it can have sub-
optimal recommendations due to inadequate statistical data 
required to configure optimal CIO.  
36: Similar to 'parameter #4' but for connected mode.  
37: Similar to 'parameter #5' but for connected mode.  
38: Similar to 'parameter #6' but for connected mode.  
39: Similar to 'parameter #8' but for connected mode.  
40: HO failure results in higher latency and more data 
interruption occasions.  
41: Frequent HOs increases the risk of HO failure both for 
static and mobile users.  
42: Latency and data interruption are intrinsic to break-before-
make HOs, hence ping-pong HOs should be avoided. 
 
Fig 8 illustrates the simplest representation of the complex 
interaction between various KPIs and mobility related 
network parameters. It can act as a foundation, with the help 
of which, researchers can devise an ideal mobility 
management scheme that aims to minimize the negative 
impact on KPIs indirectly affected by tuning mobility related 

network parameters. Now, we present a detailed survey of the 
state-of-the-art literature available on mobility challenges and 
corresponding research proposals. Insights from this tutorial 
section will be leveraged to evaluate the research papers in 
terms of conflicting KPI(s). 

III. MOBILITY CHALLENGES AND RESEARCH 
PROPOSALS 
Seamless mobility experience at a very high-speed is 
considered as one of the major use cases for 5G networks, 
particularly in wake of advent of autonomous cars, low 
altitude drones, and emerging high-speed commute systems. 
The mobility characteristics of the emerging networks, such as 
densification and adaptation of mmWave narrow beam cells 
(discussed in section I), combined with the intrinsic 
complexity of the mobility management process (discussed in 
section II) means that the mobility management in 5G and 
beyond requires significant research efforts by wider 
community. In this section, we review the recent contributions 
made by the research community to address 5G and beyond 
mobility challenges, by categorizing them in six sections as 
shown earlier in Fig. 1. Studies focused on reliability goals that 
involve achieving seamless and timely HO while preventing 
HO failures and ping-pong HOs are discussed in the first sub-
section. Studies focused on achieving mobility while 
maintaining small delay are discussed in the Latency 
Requirements sub-section. Signaling Minimization 
approaches are presented in the next sub-section, followed by 
User Tracking in futuristic ultra-dense networks. Subsequent 
sub-section covers studies on cell discovery including the goal 
to perform timely offloading from macro-cells to small-cells 
in order to prevent network congestion and efficiently utilize 
network resources. Finally, research work focused on 
lessening energy consumption are presented in the last sub-
section. 

A. RELIABILITY GOALS 
Mobility casts a serious threat to reliability especially when 
HO is being performed from one cell to another. Now we will 
discuss different research work on different HO types and the 
respective reliability goals. Comparison of reliability 
enhancement approaches has been presented in Table VI. 

1) BREAK-BEFORE-MAKE AND RELIABILITY 
5G NR employs break-before-make (hard) HO approach [18] 
where UE breaks the connection with the serving BS before 
resuming the new connection with the target BS, and this 
process makes the mobile UE prone to undesirable service 
interruption. Repetition of this type of HO under ping-pong 
scenario makes it even more susceptible to call drops. An 
effort to deal with the frequent HO case has been presented in 
[19]. This paper focuses on the multi-objective learning-based 
mobility management strategy where a learning model is 
described to obtain a comprehensive network information. 
Then a multi-objective mobility management method is 
proposed taking into consideration user QoE and number of 
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HOs. Results are compared with 3GPP based HO scheme, and 
the authors show that number of HOs are reduced by more 
than 5 times. As a future step, simulations can be presented by 
using a stochastic network model. 
Much of the reliability concerns are studied while keeping in 
view the UE downlink performance only. Authors in [20] 
studied reliability for uplink channel of multi-user MIMO 
channel. Authors employed Quadrature Spatial Modulation 
(QSM) to lower the uplink Bit Error Rate (BER) from 10-1 
(when using spatial multiplex) to the order of 10-3. As a future 
work, BER results can be shown with different user velocity 
to evaluate the efficacy of the proposed approach for a realistic 
scenario of mobile users. 

2) MAKE-BEFORE-BREAK AND RELIABILITY 
Unlike 5G NR and LTE, 3G uses an alternative of break-
before-make HO, i.e. make-before-break vis-a-vis soft HO. 
3G UE apply macro diversity where it can establish 
simultaneous connection to more than one cell, and the set of 
participating cells are referred to as Active Set (AS). Authors 
in [21] propose a 3G like soft HO approach where multiple 
serving cells are represented by AS. The results show that 
fixed AS window can prevent RLF to a great extent. However, 
throughput degradation is observed as radio resources of the 
weaker cells are unnecessarily wasted by the user. To counter 
this problem, the authors propose a dynamic AS window 
where add/remove parameters are adapted based on the slope 
of the linear curve that creates the dependency between the 
add/remove offset and the size of AS. AS based approach will 
result in more signaling, computation and energy requirements 
in maintaining and updating the connectivity to different cells 
in the AS. 
One drawback of make-before-break HO scheme is the 
complexity at UE side to process multiple RF chains. Note that 
the advent of narrow mmWave beams in 5G that is likely to 
lower the source link reliability for the mobile users, further 

undermines the perceived advantages of make-before-break 
HO. Authors in [22] analyzed the pros and cons of make-
before-break HO in more detail and concluded that they are 
unsuitable for 5G networks. For similar reasons, 3GPP RAN 
WG2 during its meeting #94 decided to discard make-before-
break like procedures from the scope. 
For the above-mentioned reasons and to achieve higher 
reliability and retainability goals, the 5G networks have 
employed hard HO process requiring successful break-before-
make procedures. Reliability goals in literature are usually 
addressed through multi-connectivity approaches. 

3) RELIABILITY THROUGH MULTI-CONNECTIVITY 
Multi-Connectivity (MC) can be employed in conjunction 
with break-before-make HO approach to mitigate interference 
through coordination. MC can attain ultra-reliability, low 
latency, and interruption-free communication by preparing the 
target cell before the transmission is broken. Furthermore, it 
tackles connection failures by using a coordinated 
transmission among the serving cells. As a result, HO failures 
and RLFs are drastically suppressed. However, drawback of 
MC includes added complexity in adding/removing MC 
participant cells. A study by Tesema et al. [23] on intra-
frequency MC shows that the RLFs can be avoided while 
enhancing throughput through joint transmission of BSs. The 
authors in [23] then extended their idea in [24] to inter-
frequency MC and prove availability benefits in that scenario. 
However, stationary users were considered with focus on 
modeling of the best server association. Their study did not 
incorporate reliability for mobile users. 
In a separate study [25], the same group of authors deal with 
mobility concerns and evaluated reliability performance 
through different intra/inter frequency cells. For intra 
frequency, Dynamic Single Frequency Network (DSFN) is 
proposed to dynamically add BSs to the coordination set. This 
in turn helps to achieve reliability and low latency of less than 

 TABLE VI 
RELIABILITY ENHANCEMENT APPROACHES 

References 

Pros Cons 

RLF 
Prevention 

QoE 
Improve

ment 

Uplink 
Considera

tion 

BER 
 Reduction 

#HO  
Reduction 

Latency 
Reduction 

User 
Velocity 

Not 
Considered 

Throughput 
Degradation 

High 
 Complexity 

[19]  ✔   ✔     

[20] 

 
 ✔ ✔   ✔   

[21] ✔       ✔ ✔ 

[23] ✔      ✔   

[24] ✔      ✔   

[25] ✔     ✔ 
   

[26] ✔        ✔ 

[27]        ✔ ✔ 
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1ms. For inter-frequency on the other hand, redundant 
transmissions are performed on the different frequency layers, 
such that the UE selects the best transmission, i.e., selection 
combining is applied. The proposed approach can avoid poor 
SINR of <-6dB (marked as RLF) and achieve higher reliability 
of 99.999% or greater. 
Tesema et al. further enhanced their work in [26] by proposing 
a novel multi-connectivity scheme that uses fast selection of 
serving cell from a set of prepared cells similar to Co-
ordinated Multi-Point Transmission (CoMP). Fig. 9 shows 
different types of CoMP. Control plane in CoMP is served by 
a primary cell only, and if radio condition of the respective 
control channel degrades, then user plane data may not be 
guaranteed even if radio condition of user plane cell is better. 
On the contrary, Fast Cell Select (FCS) is proposed in which 
the selected cell from the set of pre-arranged cells is used for 
transmission of both data and control signals. The presented 
work provides gain in the quality of the control and data 
signals, which ultimately solves RLF problem and improve 
throughput of cell-edge user. 
CoMP, although beneficial, has an intrinsic conflict with the 
hard-HO methods used in 5G networks, as connection with 
source cell terminates before setting up a connection to the 
target cell. In [27], authors addressed this conflict by 
introducing a new HO mechanism based on CoMP joint 
transmission scheme in order to minimize inter-cell-
interference (ICI) level between the adjacent cells during the 
HO execution. Their algorithm consists of Coordination set 
(CS) and Transmission set (TS) of BSs. CS selection is 
assisted by the UE through sending periodic measurement 
report which contains UE velocity and RF condition. Velocity 
metric is used to avoid small-cells for high velocity UEs, and 
RF condition is used to determine TS. Performance evaluation 
results show that ICI is reduced considerably leading to a 
better average throughput per user during the HO procedure. 

Benefits are achieved at the cost of higher complexity and 
increase in signaling data. A study on optimal TS size to 
improve reliability, and throughput, taking into consideration 
the processing complexity and the magnitude of the control 
data would be a good research contribution. 

B. LATENCY REQUIREMENTS 
Besides reliability, another mobility management objective of 
paramount importance is to minimize the length of 
transmission disruption during the HO process. In this 
subsection we review the studies and research efforts aimed to 
minimize HO delay.  

1) RACHLESS HANDOVER 
Authors in [22] identified that RACH takes about 8.5ms out of 
50ms interval required to accomplish HO task in LTE. Based 
on this assumption, they proposed a RACHless HO technique 
to improve the latency by 17%. Authors suggest alternate 
means to perform the same functionalities as of RACH. For 
instance, RACH helps target BS to compute Timing Advance, 
though with lower accuracy. In the proposed RACHless HO, 
UE can estimate timing advance from the time difference 
between the source and target cell signals. Accuracy 
evaluation of the proposed approach will help gain confidence 
to the researchers. Such timing advance estimation method has 
been further evaluated in [28]. Alternatively, target BS can 
also compute timing advance through Sounding Reference 
Signals (SRS) which is used in LTE for uplink channel 
estimation as shown in [29]. However, this process might 
result in the timing advance estimation delay as it requires UE 
to be configured with SRS first. Initial uplink power, Physical 
Uplink Shared Channel (PUSCH) in LTE, normally known 
after successful RACH procedure, can be determined through 
source BS prior to HO initiation. Eliminating RACH is a novel 
proposal. However, UE in turn has to do more processing to 
compute timing advance that may lead to decreased battery 
life in a dense network. 
While RACHless HO has its merits, the aforementioned 
challenges call for alternative approaches to reduce HO 
latency. One example of such approach is mobility aware 
caching. 

2) MOBILITY AWARE CACHING 
From the mobile users’ perspective, more data rate alone is not 
enough to ensure better user experience. Any bottleneck in the 
distribution network between RAN and content servers can 
result in a prolonged Round-Trip-Time (RTT). During a HO, 
the chances of such bottleneck increase as momentarily the 
UE’s QoE becomes dependent on two cells instead of one. 
This makes caching in the BS a useful tool to help accelerate 
the data delivery to the intended user. However, mobility 
degrades cache efficiency when UE moves to another BS. A 
study in [30] proposes to incorporate caching and computing 
ability deep into the base stations. The authors in [30] 
proposed a seamless RAN-cache HO framework based on 
mobility prediction algorithm (MPA). In the proposed 
scheme, the target BS is predicted for a UE with unfinished 

 
FIGURE 9. Types of Downlink CoMP. 
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transmission during HO. This prediction is then used to pre-
trigger the source RAN cache. This notifies the target RAN 
cache associated with the target BS to prepare for serving the 
UE and ultimately reducing latency. As a result, false 
probability of RAN-cache HO pre-trigger through MPA 
though recorded to be less than 1.36% show an 8% increase in 
the maximal RAN-cache HO processing time. Researchers 
should benefit from the history of user mobility to come up 
with an improved algorithm. 
Mobility aware caching has been investigated in [31] to 
maximize the cache hit ratio that is defined as the number of 
requests delivered by the cache server, divided by the total 
number of requests. Compared to [30], authors in [31] 
considered both macro-cells and small-cells. The first priority 
is given to the local cache followed by small-cell. However, if 
data is not received within the set deadline, macro-cell is then 
accessed to acquire data. Results assert that the proposed 
caching strategy outperforms prior caching strategies. The 
proposed cache scheme has a better cache hit ratio and low 
latency requirement for 5G networks. 

3) PAGINGLESS APPROACH 
Authors in [32] presented a novel frame structure with sub-
millisecond subframe duration operating in Time Division 
Duplex (TDD) mode aimed for 5G networks. The frame 
structure carries UL beacon resources to enable a pagingless 
system for idle mode users. For connected mode users, UL 
beacons provide channel state information (CSI) for improved 
frequency selective scheduling. However, a caveat of this 
approach is that it can lead to an excessive amount of uplink 
messages. This in turn, may cause accelerated UE battery 
drainage and thus smaller battery life which is contradictory to 
one of the major 5G requirements. 

C. SIGNALING MINIMIZATION 
In both LTE and 5G NR, the processing unit is shifted to the 
edge, i.e., BS, primarily to reduce latency. However, this 
comes at the expense of increased signaling generated as the 
UE context is shifted from one cell to another during the HO 
procedure. This issue aggravates with the ultra-dense BS 
deployment. High signaling not only chokes the CPU of BSs, 
but also results in lower effective spectrum efficiency by 
consuming a substantial amount of resources in the air 
interface. Too much signaling between neighboring BSs and 
BS-Core can result in potential congestion in the backhaul for 
the 5G networks with ultra-dense BS deployment. Reason 
being the expected myriad of mobile UEs, ultra-dense BS 
deployment, and added features that require high coordination 
e.g. multi-connectivity, carrier aggregation, and interference 
mitigation techniques. Thus, there is a possibility of network 
being paralyzed especially in busy hours due to the avalanche 
of signaling traffic. Signaling avalanche is an eminent threat 
in future ultra-dense networks. The research efforts by the 
research community to minimize the mobility signaling load 
can be loosely categorized in the following four sub-
categories. 

1) HO SIGNALING REDUCTION THROUGH MINING 
HO PATTERNS 

One basic but effective way to reduce HO signaling is to 
characterize HO behavior among cells to identify cells with an 
unusually large number of HOs or otherwise abnormal HO 
pattern e.g. ping-pong. Authors in [33] study the HO behavior 
of cells and propose a clustering model using K-means, to 
group cells with similar HO behavior. Further evaluation was 
done using actual HO attempt and HO success KPI of nearly 
two thousand WCDMA cells. The idea is to forecast the 
number of HOs and detect abnormal HO behavior among cell 
pairs using linear regression and neural network techniques. 
The detection is then used to perform targeted optimization of 
HO parameters in respective cells to minimize HO signaling. 
Adding a temporal component to training data can further 
increase the accuracy of the prediction. 

2) MOBILITY SIGNALING REDUCTION THROUGH 
RAN CENTRALIZATION 

Another method to reduce mobility signaling is to leverage the 
centralization of RAN e.g. using Cloud-RAN (C-RAN). 
Uladzamir et al. [34] recently proposed mobility aware 
hierarchical clustering approach (HIER) to group Virtual Base 
Stations (VBSs). Clustering based on the location of Radio 
Resource Heads (RRH) aims to reduce costly HOs and thus, 
minimize signaling data. They also proposed location aware 
packing algorithm (LA) where inter-cluster mobility statistics 
are obtained by keeping track of UE movement, UE history to 
predict the traffic intensity between BSs. In addition, the 
history of inter-RRH HOs is considered as well. The proposed 
scheme when compared with affinity propagation clustering 
[35] can reduce up to 34.8% HOs, but at the cost of much 
higher requirement of RRHs. The approach can be beneficial 
for urban areas, but for less dense sub urban and rural areas, 
network deployment at this scale won’t be feasible. 

3) MOBILITY SIGNALING REDUCTION THROUGH 
CELL EXTENSION 

An Extended Cell (EC) concept is proposed in [36] to 
dynamically form groups of several adjacent cells. HO 
performance improvement is rendered by increasing the 
overlapping area between two adjacent cells in the Radio over 
Fiber (RoF) indoor networks. The proposed approach reduces 
the number of HOs and the call drop probability during the HO 
by 70%. Although proven effective, it lacks the dynamic 
procedures to define ECs to optimize network resources. 
Shortcomings were addressed by authors in [37] by extending 
the idea and coming up with a proposal on the Moving 
Extended Cell (MEC). Here, each mobile UE is covered by 7-
cell EC where each EC transmits the same user data at every 
instance. This in turn, reduces HO latency through early 
preparation. Evaluation results show the proposed architecture 
can totally avoid call drop and packet loss for UE’s with a 
velocity of up to 40 m/s. The authors in [37] suggested that 
MEC is very efficient in tackling HO for mmWave cells but is 
vulnerable to throughput inefficiency as all seven cells in the 
cluster transmit for a single user. 
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4) MOBILITY SIGNALING REDUCTION THROUGH 
VIRTUALIZATION 

Virtual Cell (VC) has been proposed as a solution by Hossain 
et al. in [38] to reduce mobility signaling while increasing the 
throughput efficiency of 60 GHz RoF network. VC is a central 
part of an actual cell, and the remaining boundary area is 
divided into numbered tiles. Wireless Sensor Network keeps 
track of the UE location and periodically sends report to a 
centralized controller. Multiple Antenna Terminals (AT) 
cover a single cell, and only a single AT is activated at an 
instant. When the UE steps on one of the boundary-located 
tiles, the controller activates respective neighbor AT to 
transmit similar data. In the VC scheme proposed in [38], 
maximum of only two ATs can be activated for HO 
preparation in contrast to 6 in MEC [37]. End results of using 
VC concept show an increase of 33% throughput efficiency in 
comparison to MEC. Drawback of the proposal involves 
management of a wireless sensor network to track and report 
UE location. And if the UE velocity is high, the low powered 
sensors may not be able to timely report or even identify the 
presence of a high-speed user. 

D. USER TRACKING 
Location management, sometimes referred to as mobility 
tracking or user tracking, is defined as the set of procedures 
that determines UE location at any instance. User tracking is 
inevitable in cellular networks, so that incoming data from the 
core network can be delivered to the user. Densification of 
both cells and users, as well as increased mobility focused use 
cases such as Intelligent Transportation Systems 
(ITS)/Unmanned Aerial Vehicles (UAV) etc. bring new 
challenges to user tracking in 5G environment. The recent 
attempts to address these challenges can be loosely 
categorized into following three subcategories:  

1) DISTRIBUTED TRACKING AREA UPDATE 
A framework to minimize conflicting metrics, Tracking Area 
Update (TAU) and paging, is presented in [39] by distribution 
of Tracking Area (TA) into Tracking Area Lists (TAL) in two 
phases. First phase is offline, which is responsible to assign 
TAs to TALs using three different approaches. The first two 
favors paging overhead and TAU respectively, while the third 
one uses nash bargaining game to ensure fairness between 
paging overhead and TAU. Second phase is online which 
controls the probabilistic distribution of TALs on UEs by 
taking into account their behavior, incoming transmission 
frequency and mobility patterns. Numerical results were 
shown for the three approaches of the first phase, where the 
third solution provides a fair tradeoff between paging 
overhead and TAU. As a future step, results should be 
compared with prior schemes.  
No research work focusing on the horizontal or vertical 
deployment of TAs is present, therefore researchers can come 
up with smarter and more effective ways for operators to 
define Tracking Areas. 

2) HYBRID TRACKING AREA UPDATE AND 
PAGING 

5G network will have large range of UEs and dense network 
deployment as discussed earlier. Hence, a huge amount of 
paging especially for millions of IoT devices is expected. As a 
result, signaling associated with paging may become 
enormous if currently available approach is used. To address 
this problem, authors in [40] propose a hybrid scheme in 
which either RAN or core network can initiate paging. RAN 
based paging with Tracking Area (TA) of just one BS is 
proposed for the RRC inactive [41] UEs to have low latency 
at the expense of high buffering capacity to transfer the content 
to the neighboring BS in case of user mobility. Meanwhile, 
core network-based paging is recommended to be used for idle 
UEs. Authors also proposed a hierarchical paging and location 
tracking scheme to minimize signaling load by assigning an 
anchor BS for location management. They conclude that RAN 
based paging is not efficient for high mobility UEs as TA is 
limited to a single BS. For hierarchical approach on the other 
hand, there should be more data management and processing 
for every user at anchor BS which becomes another single 
point of failure. Processor overload or X2 (inter-cell 
communication link in LTE) congestion, as a result, can 
disrupt the paging process. 

3) DYNAMIC/ADAPTIVE TRACKING AREA UPDATE 
Authors in [42] proposed an adaptive method that employs 
smart TAs to reduce the frequencies of TAUs and the sizes of 
paging areas. The proposed scheme uses the interacting 
multiple model (IMM) algorithm [43] to determine the 
estimated location of a UE at the time of the latest registration 
and provide a predicted location after a certain time frame. An 
experimental evaluation with an artificial trajectory showed 
that this approach cuts half of the extra location registrations 
compared with non-adaptive methods. Aside from that, this 
method also determines TA adaptively to significantly reduce 
the average paging sizes resulting in to lesser signaling for 
each paging attempts. As a future step, comparison results can 
be added for different types of mobile users at different speeds 
and trajectories to prove the effectiveness of their approach. 
Authors in [44] employed Apriori algorithm [45] for dynamic 
Location Area planning using call logs of several mobile 
users. Apriori algorithm finds frequent itemset using an 
iterative level-wise search procedure. By taking minimum 
support of 100%, Apriori algorithm can highlight those cells 
which serve mobile users every day. Based on this approach, 
authors in [44] suggested to create a dynamic TA based on 
more than 80% minimum support. Authors in [44] categorized 
mobile users into predictable, expected and random groups 
based on the minimum support value. For each category, the 
authors propose to minimize location management cost by 
employing a suitable algorithm. However, the exact 
algorithms needed to minimize location updates, in this 
scheme, remain to be investigated as future work. 
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E. CELL DISCOVERY 
Traditional networks with High Frequency (HF) bands 
broadcast the reference signals (pilot symbols) for cell 
discovery as mandated by 3GPP. Majority solutions proposed 
in literature for cell discovery involve periodic scanning by the 
UE of these broadcast signals. The higher frequency of this 
periodic scanning ensures timely cell discovery but results in 
increased battery consumption leading to trade-off between 
energy efficiency on UE side, network side, QoE, overall 
capacity and load distribution. In the following we discuss 
studies that have investigated these trade-offs and proposal 
solution to optimize one KPI or other.  

1) CELL DISCOVERY WITH UE ENERGY 
CONSTRAINT 

5G networks will have heterogeneity of BSs with a motely of 
macro-cells and small-cells. A mobile UE connected to a 
macro-cell must scan for potential small-cells to benefit from 
the high data rate and traffic offloading opportunity. If a 
mobile UE uses high scanning periodicity, it is likely to 
discover small-cells in a more timely fashion. Thus, it may 
avail better offloading opportunities, but at the cost of reduced 
battery life due to increased amount of energy consumed by 
the scanning process, and vice versa. The investigation of this 
tradeoff is interesting and yet a challenging research problem 
as the optimal scanning periodicity, if exists, might be 
dependent on the cell density and user speed among several 
other factors. 
Authors in [46] use a rigorous approach that leverages 
stochastic geometry-based modelling of the network and 
empirical modeling of UE mobility. Analytical expressions 
have been derived to characterize and quantify the dependency 
of the UE energy efficiency on the cell density, cell discovery 
periodicity and the user velocity. Through analytical as well as 
Monte Carlo simulation results, it’s been shown in [46] that 
UE battery life reduces significantly with increased cell 
discovery rate, while the UE throughput increases and vice 
versa. The key finding of this analysis is that, there exists an 
optimal cell discovery frequency for a given cell density and 
user speed statistics. This optimal cell discovery frequency 
maximizes the UE energy efficiency (EE) by achieving a 
Pareto optimal point between the capacity lost by missing cells 
with low cell discovery frequency and energy saved at UE in 
doing so and vice versa. 
Daniel et al. [47] proposed an energy efficient small-cell 
discovery technique using radio fingerprints. In this proposed 
solution, network configures UE with several radio 
fingerprints which are lists of cell-IDs and RSRP strength at 
different intervals. As a normal procedure, users served by the 
macro-cell performs the neighbor cell measurement as it 
moves around and compares those to the configured radio 
fingerprints. Upon a successful match, macro-cell is reported 
back which in return configures the corresponding small-cell. 
Authors show that energy efficiency of 70-80% is achieved on 
UE side by avoiding unnecessary small-cell discovery 
measurements, and up to 45% on network side by small-cell 

activation/deactivation. Practical use of this approach will be 
limited to shadowing since RSRP at a given point changes 
with time and the effect of environmental changes like 
rain/snow also affects the standard deviation of shadowing. 
Moreover, MDT will reveal better results as the location of the 
UE with respect to the small-cell location can be known, 
followed by the successful small-cell association. 

2) CELL SELECTION WITH NETWORK ENERGY 
EFFICIENCY PERSPECTIVE 

The Information and Communications Technology (ICT) 
sector contributes around 2-3% to world’s carbon emissions 
and is doubling every four years [48]. Since mobility is closely 
coupled with uneven and dynamic user distribution, the 
mobility patterns can be exploited to turn OFF/ON cells for 
enhancing energy efficiency. A solution to conserve network 
energy using such mobility leveraging approach is proposed 
in [48]. Decision of powering OFF the BSs is made using the 
UE velocity, receive power, BS load and energy consumption. 
In addition, HO to the small-cell can be made only if the UE 
velocity and the cell load is lower than the respective 
thresholds. As a result, the low load cells can be powered OFF. 
However, the paper does not address when and how to turn 
ON the cell, as the powered OFF cell in the presence of the 
candidate UEs can have negative impacts on the capacity, 
efficiency and user satisfaction. 
Random way point mobility models and the stochastic 
geometry theory are utilized in [49] to evaluate the energy 
efficiency of 5G networks. The network capacity and energy 
efficiency are evaluated for Ultra-Dense Cellular Networks 
(UDN) considering the user mobility. Results were 
demonstrated using Monte Carlo scheme where a user will 
keep stationary for a certain time, and then start moving to a 
random direction with variable but bounded velocity range. 
Results indicate that the energy efficiency decreases 
exponentially with increase in the small-cell density. Energy 
efficiency decreases from 160bits/J to 155bits/J and 144bits/J 
when small-cell density was increased from 10 cell/km2 to 15 
cell/km2 and 20 cell/km2 respectively. 

3) MMWAVE BEAM ALIGNMENT AND USER 
TRACKING 

The studies discussed in the last two subsections do not 
consider the several idiosyncrasies arising from the advent of 
mmWaves cells, as discussed in the following. mmWave band 
cell discovery becomes far more complex compared to the 
high frequency (HF) cells because of the high penetration loss 
and narrow beams [50]. 
Directional path in mmWave can deteriorate sharply due to 
rapid changes in the environment which calls for an intense 
tracking and alignment. The situation can be aggravated when 
considering mobile users. To address these issues, authors in 
[51] proposed two innovative schemes by which UE can 
alternately scan the whole angular space exhaustively and 
select the beam with the best SINR. They propose the 
mmWave BS to send pilots in the configured finite directions 
at regular intervals, one at a time. The UE then scans for the 
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mmWave-cell beam using two mechanisms: a) periodic 
refresh (PR) – The UE scans in all directions one at a time and 
the direction with the maximum SINR is selected; b) periodic 
refinement and refresh (PRaR) – The first optimal beam with 
the maximum SINR is selected as per the PR, and then the UE 
performs a refinement procedure by scanning the neighboring 
direction to adapt according to the changing condition or due 
to the UE mobility. This mmWave tracking approach is 
depicted in Fig. 10. Comparison between both schemes were 
done using the real-world measurement data collected in New 
York city on carrier frequency of 28GHz. As expected, PRaR 
is less energy efficient than PR because of the much frequent 
refinement procedure. However, they did not compare their 
schemes with the broadcasting approach or direct alignment 
schemes. Also, the scenario might arise where both the 
mmWave BS (in sending pilots) and the UE (in scanning 
pilots) are not synchronized with each other in terms of 
direction. Such a scenario is likely to lead to the tracking and 
alignment delay. Alignment process is done by scanning the 
adjacent beams only and can give sub-optimal results for the 
high-speed users.  
Esmaiel et al. [52] proposed a novel mmWave multi-level 
beamforming approach. mmWave link is established after 
multi-level beam search is conducted using a compressive 
sensing-based channel estimation. The estimated UE location 
is used to determine the number of beams and the bandwidth 
required for constructing the sensing matrix used in each beam 
searching level. Results show an increase in the spectral 
efficiency by 40% under good radio conditions. Authors in 
[52] also proposed a novel concept [53] of two-level control 
and user data (2CU/U) planes splitting, where the LTE BS and 
the WiFi access point provides control over the distributed 
sub-clouds and distributed mmWave BSs respectively. With 
the proposed approach, mmWave miss-detection probability 
as low as 10% can be obtained compared to 90% with the 
conventional approach when mmWave BS are deployed in a 
sparse manner. The result can be further improved by 
incorporating the user movement historical data, and to 
observe the result for different UE speed. 

a) HO in mmWave Band 
Traditional HO is based on the Received Signal Strength 
(RSS) wherein pilot signal strength measured by the UE 

determines the cell-edge and thus lends assistance in 
performing HO to the target cell. This approach is ineffective 
for addressing the unique challenges associated with the 
mmWaves. In mmWave cells, the RF reception changes 
drastically with UE speed and direction. Hence relying on the 
RSS to anticipate a cell edge may not suffice.  
Authors in [54] suggest a novel Inter-Beam HO Class (IBHC) 
concept combined with the HO control and radio resource 
management functionalities. Initially, the user is assigned to a 
mobility classes depending on its estimate speed. The 
corresponding HO frequency is defined such that the high 
velocity UEs are expected to observe more HOs than the 
pedestrians. The mobile user is assigned a group of beams as 
per mobility class, load conditions and the expected path of 
UE. Each beam in the group contains similar resource 
allocation to improve the reception quality. HO is thus 
performed only at the edge of the beam-group. The underlying 
assumption in the proposed scheme is that the individual 
signals of each beam are perfectly synchronized. This can be 
true for low speed users; however, it may not hold for the high-
speed users. Another strong assumption is the perfect 
estimation of UE velocity. UE velocity estimation is a big 
challenge even in the existing mobile networks, where the 
number of HOs in a moving time window are used to estimate 
UE velocity. Emerging networks with dense deployment of 
multi-frequency networks will make the prediction of UE 
velocity even a bigger challenge. Concept presented in the [54] 
can be extended by considering the relationship between the 
maximum user velocity and the mmWave footprint where its 
beneficial for the mobile user to camp to the mmWave cell. 
The study should include the signaling cost and energy 
consumption in scanning for the mmWave cells. 
In [55], authors leverage the concept of moving cell for train 
communication using 60 GHz band. To avoid the large 
number of HOs in high speed train, authors propose to employ 
the Radio over Fiber (RoF) technique. The key idea is to make 
the serving cells move together with the train and thus provide 
smooth uninterrupted transmission to the passengers. 
However, for this scheme to be practical, the train’s velocity 
and the direction needs to be pre-known to achieve 
synchronization. Furthermore, due to the inability to cope up 
with randomness of user mobility, this concept is not 
appropriate for mobility management in indoor environments.  
The state-of-the-art literature work reviewed in this section is 
focused on managing mobility in a reactive way. Two of the 
key challenges in mobility management in emerging networks 
that are not addressed by the current reactive mobility 
management paradigm in the industry and the associated 
literature in academia are high latency of the HO process and 
the large signaling overhead. These challenges become more 
important with the increasing fraction of mobile UEs, more 
bandwidth hungry applications and the advent of delay 
sensitive use-cases like self-driven vehicles. Proactive 
mobility management is an emerging paradigm that has the 
potential to address these challenges. It’s a vital component by 

 

FIGURE 10. mmWave tracking. (a) Refresh procedure through 12 
directions, (b) Refinement procedure through 2 directions. 
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which the network operators can guarantee the success of the 
futuristic mobile networks. Key concept of the proactive 
mobility management and the recent studies that have 
presented few novel ideas to achieve the proactive mobility 
management are discussed in the next section. 

IV. PROACTIVE MOBILITY MANAGEMENT 
It is a well-researched fact that people tend to visit the same 
places repeatedly in their daily life, e.g. workplace, school, 
gym, parks, shopping venues, etc. This makes their movement 
to feature a high degree of repetition and hence predictability. 
According to some large-scale studies, this perceptibility can 
be as high as 93% [56]. This intrinsic predictability in human 
mobility can be leveraged to build models to predict the UE 
mobility patterns. In cellular networks, these models can be 
built by harnessing the large volumes of UE mobility related 
data such as call detail records (CDRs), GPS traces, and data 
traffic from existing networks. Following is the list of some of 
the potential use cases of mobility prediction in the current and 
emerging cellular networks:  
 Enhancing the overall QoS and QoE by reserving and 

managing radio resources a priori for users expected to 
arrive in a cell [57]. 

 Prevent failures and minimize HO delay e.g. by 
proactively triggering HO [58] [59]. 

 Prevent ping-pong HOs.  
 Efficient load balancing e.g. by predicting cell loads and 

emergence of hot spots. 
 Assist in cell activation/deactivation, and hence, conserve 

energy consumption.  
Mobility prediction models in literature can be classified into 
three broad groups: 
1) History based prediction models: In this type of prediction 

models, UEs next target cell is predicted based on the 
statistical analysis of historical records such as HO records 
or CDR records.  

2) Measurement based prediction models: Such prediction 
schemes derive probability of user transition to next cell 
based on the real time measurements e.g. RSSI, SINR, 
distance, etc. 

3) Location based prediction models: Current user location 
and in some cases urban transportation infrastructure is 
used to predict the future user location in the location-
based prediction models. 

In the following, we discuss the recent studies in literature that 
have made use of the two types of prediction approaches for 
various use cases. 

A. History Based Prediction 
History based mobility prediction approaches can be further 
divided into the following categories: 

1) CELL TRACE BASED PREDICTION 
Location prediction based on cellular network traces has 
recently attracted a lot of attention. Zhang et al. propose 
NextCell scheme [60] that utilizes social interplay factor to 
enhance mobility prediction. Social interplay is characterized 

by the convolution between entropy of the average call 
duration between two users, and the probability distribution of 
these two users to be co-located in the same cell. NextCell 
predicts the user location at cell tower level in the forthcoming 
one to six hours. It shows that inclusion of the social interplay 
improves prediction accuracy by 20% when compared to 
behavior periodicity-based predictor. However, results were 
not compared with the existing prediction schemes. 
Authors in [61] presented a HO prediction scheme that 
combines signal strength/quality to physical proximity along 
with the UE context in terms of speed, direction, and HO 
history. The presented scheme achieves 33.6% reduction in 
HO latency when compared with conventional HO approach. 

2) MACHINE LEARNING BASED PREDICTION 
Complex interaction between different components of a 
network can be well captured by Machine Learning 
approaches. For the same reason, much of the history-based 
prediction works revolve around machine learning based 
approaches. Authors in [33] argue that most of the research 
involving behavior prediction of a single UE is an infeasible 
and impractical approach. The argument is backed by the fact 
that some HOs are coverage based, while some are network 
initiated (e.g. load balancing). They propose to address these 
challenges by employing the K-means algorithm to group the 
cells with the most similar HO behavior into a cluster. Next, 
the future HOs were forecasted, and abnormal HOs were 
identified. The main target of the proposal is to minimize the 
signaling load by avoiding the abnormal HOs. 
Now we will present some of the research work done on 
specific machine learning algorithms: 

a) Support Vector Machine 
Authors in [62] capitalize on Support Vector Machine (SVM) 
to predict the user location in the next 5 seconds. A framework 
to minimize HO delay using mobility prediction is proposed. 
However, they did not validate the framework, neither did they 
compare their work with the existing proposals. In [63], SVM 
predicts the next cell in a real-time manner, by combining GPS 
data, short-term Channel State Information (CSI), and long-
term HO history. The presented model was applied on a 
synthetic Manhattan grid scenario. Results show that CSI 
results in almost 100% better prediction accuracy compared to 
using HO history alone. Using different shadowing values to 
represent different terrain and environment can further 
strengthen the idea practicality. 

b) Neural Networks  
Few works in [64] [65] have leveraged neural networks for 
mobility prediction. The basic idea is to utilize the neural 
network to learn mobility-based model for every user and then 
make prediction about the future serving cell. Authors in [64] 
performed clustering of the input RSS samples through k-
means. The clusters and input RSS samples were then fed to a 
classifying model, where neural network was used to predict 
the user position. Results show that the prediction accuracy 
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increase by just 5% when compared to the prediction using 
neural networks alone.  

3) MARKOV CHAIN BASED PREDICTION 
A large number of research studies have used Markov chain 
based approaches for mobility prediction for their ability to 
yield better accuracy than most other predictors with lower 
complexity [66]. In the following, we review recent studies for 
commonly used Markov Chain (MC) variants: 

a) Standard Markov Chain:  
Standard Markov Chain is a memory-less algorithm as the 
next state depends only on the current state and not on the 
sequence of the events that preceded it. 
Authors in [67] extracted trajectories of 4,914 individuals 
using 27-day log of the mobile network traffic data. They 
compared the original Markov algorithm with the Lempel-Ziv 
(LZ) family algorithm [68]. The core operation of the LZ 
predictor is by maintaining a prediction tree which adds more 
complexity compared to Markov. It was concluded that 
although slightly more accurate, LZ family algorithm 
consumes a lot more resources and time than Markov 
algorithm. Most of the mobility prediction algorithms only 
consider spatial factors to predict future movements. Authors 
in [68] improved Markov Chain based model by adding a 
temporal factor and achieved 6% higher accuracy.  
Humans usually follow regular paths as discussed earlier, 
however, they may deviate from their accustomed routine at 
some instances. Authors in [69] proposed a practical model 
based on State Based Prediction (SBP) method to predict the 
place to be visited when the user’s trajectory exhibits 
unexpected irregularities. When user diverts from the routine, 
SBP is employed to conduct the prediction. Experiments 
reveal that the accuracy of proposed model can reach more 
than 83%, which is higher than the accuracy of 60% achieved 
by LZ predictor used in [68]. 
Authors in [70] proposed an implementation architecture for 
the MOBaaS (Mobility and Bandwidth prediction as a 
Service). The MOBaaS can be readily integrated with any 
other virtualized LTE component to provide the prediction 
information. Spatial information (location history) and 
temporal information (time and day data) are collected and 
analyzed. The results show a 33% reduction in access time for 
the requested content using the MOBaaS prediction 
information can be achieved. Due to its appeal, several 
extensions of MOBaaS were proposed later. For example, in 
[71], authors stressed that MOBaaS can be implemented in a 
cloud based mobile network architecture and can be used as a 
support service by any other virtualized mobile network 
service. Authors also evaluated the feasibility and 
effectiveness of the proposed architecture. 
Fazio et al. [72] propose Distributed Prediction with 
Bandwidth Management Algorithm (DPBMA). The 
algorithm uses Markov Chains to predict the user movement 
at each BS in a distributed way. This makes the proposed 
solution different from many other studies [67], [69], [70] 

where Markov chains are used to improve system utilization 
by reserving resources prior to the HO. This helps in 
preventing the call drop occurrences. However, distributed 
algorithm means BS needs to do a lot of processing making 
this solution not an attractive option for low cost BS or small-
cells. 

b) Enhanced-Markov Chain 
In [73], subscriber’s mobility is predicted using the enhanced 
Markov chain algorithm. The core idea is to add the behavior 
pattern and temporal data of the users from CDR into the Local 
Prediction Algorithm (LPA) and the Global Prediction 
Algorithm (GPA). LPA and GPA are based on first and second 
order Markov processes where transition probability to next 
cell depends only on the present cell, and both present and 
previous cell respectively. Results show that the proposed 
prediction methodology achieves prediction accuracy of 96% 
compared to GPA with prediction accuracy of 81.5%. 
However, users without any historical record in the training 
process showed poor prediction accuracy. Techniques such as 
particle filter or Kalman filter can be employed to increase 
accuracy for new users. 

c) Semi-Markov Model 
Authors in [74] argue that both discrete and spatial Markov 
Chain assume human mobility as memory less. By using these 
approaches, we can achieve spatial prediction of future cell, 
but time factor cannot be incorporated. To address this 
concern, authors predicted HO to the neighboring BS using 
Semi-Markov Model. Semi Markov process allows for 
arbitrarily distributed sojourn times. Experimental evaluation 
leveraging on the real network traces generated by the 
smartphone application showed prediction accuracy of 50% to 
90%. An extension of this approach can be to have ping-pong 
HO predictions. 

d) Hidden-Markov Model (HMM) 
Ahlam et al. [75] proposed HO decision algorithm (OHMP) 
using HMM predictor to accurately estimate the next femto-
cell using a) the current and historical movement information, 
and b) the strength of the received signals of the nearby BSs. 
The performance of OHMP is validated by comparison with 
the nearest-neighbor and random BS selection strategies. 
Results show that the number of ping-pong HOs reduce by 7 
times when considering dense deployment of femto cells. 
Results in [75] are demonstrated for a single user scenario only 
and does not portray futuristic cellular networks with large 
number of users. To address this concern, same set of authors 
extended their idea in [76] by incorporating multiple UEs. 
They take into consideration the available BS resources of 
serving femto-cell and interference level from the target 
femto-cell. The presented OHMP-CAC algorithm introduced 
a proactive HO scenario where HO is triggered when SINR of 
the serving cell reaches a predefined threshold. OHMP-CAC 
minimized the number of HOs by 64% and reduced the 
average HO decision delay by up to 75% when compared with 
the traditional RSSI based scheme. 
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As discussed earlier, mobility prediction using Markov chain 
is a memory-less system as future state can only be determined 
by the current state. On the other hand, enhanced Markov 
Chains are based on historical data, but their application is 
very complex. Moreover, mobile operators may not be 
allowed by the customers to use their historical data due to 
privacy concerns. Even if historical records are accessible, HO 
delay might still be observed due to the extraction and 
processing complexity of historical records. Due to these 
factors, history-based prediction algorithms might render 
impractical. 

B. Measurement Based Prediction 
Measurement based mobility prediction approaches are more 
accurate than history-based mobility prediction schemes. 
However, the processing complexity due to the measurement 
procedure cannot be ignored. 

1) RSSI BASED PREDICTION 
Soh and Kim [77] introduced RSSI based mobility prediction 
while keeping in view different UE velocities. They 
incorporated UE trajectory and road topology information to 
yield better prediction accuracy. The prediction goal is to 
achieve timely HO and limit the probability of forced 
termination during HOs. In addition, bandwidth reservation 
scheme was proposed that dynamically reserves radio 
resources at both participating BSs during the HO procedure. 
Results show that proposed mobility prediction scheme helps 
achieve almost similar forced termination probability as the 
benchmark scheme with perfect knowledge of the mobile 
UE’s next cell and HO time.  
Authors in [78] proposed an RSSI-based prediction scheme to 
reduce VoLTE end-to-end delay and HO delay under different 
UE velocities in mixed femto-cell and macro-cell 
environments. The core idea is to send the measurement 
reports based on user velocity and predict when and where to 
trigger HO procedure. As a result, HO delay is reduced by 
28%. For ultra-dense BS deployment, mobile UE may not 
perform HO to each BS on its trajectory. Future work can 
include the consideration of load condition, so that both low 
latency and adequate resources can be guaranteed for 
improved QoE. 
The decision to skip the HO to a better radio condition cell can 
be based on dwell time or cell load condition. Next femto-cell 
prediction based on radio connection quality and cell load 
status is presented in [79]. Authors proposed two cell selection 
methods; a) BS prediction after analyzing the collected data of 
average RSSI from nearby femtocells, b) using cognitive radio 
to sense neighboring femtocells load before triggering HO. 
Results show that appreciable number of HOs can be avoided 
when compared with only RSS based HO approach. Thus, 
data interruption during HO and chances of Radio Link Failure 
e.g., due to ping-pong HOs can be avoided. 
Authors in [80] argue that RSS alone should not be considered 
when performing inter-RAT HO. Instead current RSS 
predicted RSS and available bandwidth should be considered. 

They proposed Fuzzy logic based Normalized Quantitative 
Decision (FNQD) scheme which aids in eliminating ping-
pong effects in HetNets. This work can help realize improved 
mobility management for LTE-Unlicensed (LTE-U). 
However, the key performance metrics such as throughput and 
HO delay should be added for validation purposes.  

2) MEASUREMENT REPORT BASED PREDICTION 
Song et al. used Grey system theory in [81] to predict the 
(N+1)th measurement report (MR) from Nth MR for high speed 
railways. The key idea is to utilize the predicted MR to make 
proactive HO trigger decisions. Their findings showed that the 
difference between predicted MR and actual MR is within 1%. 
Thus, the proposed scheme is capable of proactively triggering 
HO in advance and HO success probability is enhanced from 
5% to 10%. 

3) USER DIRECTION BASED PREDICTION 
Authors in [82] present a user mobility prediction method for 
ultra-dense networks using Lagrange’s interpolation. They 
predicted user’s arrival into their neighboring femtocells based 
on users moving direction and the distance between users and 
neighboring cells. The presented approach increases the 
prediction accuracy when compared with only distance based 
and direction based mobility prediction. However, the 
performance of their proposed prediction scheme is not 
compared with other existing schemes to quantify the 
performance gains. 

4) USER VELOCITY BASED PREDICTION 
Higher UE velocity imposes additional threat to reliability 
making prediction of UE velocity extremely important to help 
tune the parameters more effectively. 3GPP based solution 
assigns mobility states (high, medium, low) depending on 
certain number of HOs in a moving time window. However, 
this technique will be inefficient in 5G networks with 
unplanned and highly dense deployment of heterogeneous BS 
having variable cell radius. UE velocity was estimated in [83] 
based on the sojourn time sample and accuracy was analyzed 
via Cramer Rao Lower bound. Numerical results show that the 
velocity prediction error decreases with the increase in BS 
density. The authors in [83] further extended their idea in [84]. 
The predicted UE velocity was used to assign the appropriate 
mobility state. Validation was done by gathering statistics of 
the number of HOs as a function of UE velocity, small-cell 
density, and HO count measurement time window. The results 
show similar conclusion as in [83] that the accuracy of a 
suitable mobility state detection (known from UE velocity) 
increases with increasing small-cell density. 
Authors in [85] observed that mobility in urban areas depends 
on the traffic laws and is affected by the behavior of other 
people (red signal, other driver brakes etc.). They predicted 
user mobility based on the observation that a UE with constant 
velocity will probably go straight, while a UE decreasing in 
velocity might indicate stoppage on red light or a turn to a 
different direction. User location in their model is estimated 
from uplink time difference of arrival or provided by the UE 
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via AGPS while velocity estimation is achieved by increasing 
sampling rate of location or by Doppler shift. Results showed 
that overall throughput can be enhanced by 39%, 31%, and 
19% for UE velocities ranging from 25, 50, 75 km/h 
respectively. 

C. Location Based Prediction 
The knowledge of UE location can assist in an improved 
mobility prediction. Effective localization when combined 

with the mobility prediction algorithms can yield more 
efficient HO related QoE results. 
Soh and Kim in [86] presented a decentralized Road Topology 
Based mobility prediction technique where the GPS equipped 
UEs shall perform mobility prediction based on approximated 
cell boundary data that was shared by the serving BS. Cell 
boundary data is represented by a set of points at the cell edge 
and is populated based on historical measurement reports sent 
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[60] ✔             ✔ 
[62]  ✔            ✔ 
[63]  ✔            ✔ 
[64]  ✔  ✔          ✔ 
[65]  ✔       ✔      

[67]   ✔           ✔ 

[111]   ✔         ✔   

[68]   ✔           ✔ 
[69]   ✔           ✔ 
[70]   ✔         ✔   

[71]   ✔         ✔   

[72]   ✔       ✔  ✔ ✔  

[73]   ✔           ✔ 
[74]   ✔           ✔ 
[75]   ✔ ✔     ✔      

[76]   ✔      ✔  ✔  ✔  

[77]    ✔   ✔      ✔  

[78]    ✔   ✔    ✔    

[79]    ✔     ✔    ✔  

[80]    ✔     ✔      

[81]     ✔      ✔ ✔   

[82]      ✔        ✔ 

[83]       ✔  ✔ ✔  ✔   

[84]       ✔  ✔ ✔  ✔   

[85]       ✔  ✔ ✔  ✔   

[86]     ✔   ✔  ✔   ✔  

[87]     ✔   ✔  ✔   ✔  
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by UEs. UE at the cell edge will thus report the corresponding 
location ID back to the BS, and proactive resource reservation 
at potential BS can be achieved. Results show considerable 
reduction in forced termination compared to a reactive HO 
approach without mobility prediction. This approach can be 
applied to the macro-cells but is not reasonable to small-cells 
as mobile UEs will have to send a lot of high-powered uplink 
messages at cell edge (high path loss condition). This can lead 
to an increase in HO failure due to high uplink RSSI. 
Moreover, UE battery consumption will be high. 
Authors in [86] proposed mobility prediction scheme based on 
road topology information. The main idea is based on the 
approximated cell boundary based on prior HO instances, 
being configured by the serving cell. The authors in [86] 
extended their idea in [87] to add the temporal component to 
mobility prediction. The scheme uses linear extrapolation 
from a UE positioning data to predict its HO cell and time. 
70% mobility prediction accuracy was achieved compared to 
60% in their prior work [86]. 
Location based mobility prediction approaches assume all cell 
phones to have an accurate position information, which cannot 
always be guaranteed. Moreover, security concerns of the 
subscribers may hinder the collection of necessary data to 
realize accurate cell boundaries. 
While proactive mobility management seems to be a great fit 
to address the stringent QoE requirements in the emerging 
cellular networks, the trivial network dimensioning tasks 
should be planned while keeping in view the effect of mobility 
on the deployed network.  

V. MOBILITY ORIENTED NETWORK PLANNING AND 
OPTIMIZATION  
Realizing massive potential of network densification to 
address the capacity crunch has introduced additional network 
planning challenges as discussed by Azar et al. in [88]. One 
such challenge will be faced due to larger fraction of the 
mobile users in the network; hence, the network must be 
planned while considering mobility management in mind. 
Suitable network architecture can help achieve QoS goals 
while keeping the cost (e.g. signaling) to a minimum, and 
ultimately help attain higher network efficiency. 

A. Signaling Minimization by Reduction in Handovers 
in High Speed Trains 

Since considerable signaling overhead is being generated due 
to a single HO, network planning and architecture aimed to 
reduce the number of HOs can certainly be very effective. 
High speed train users are subjected to frequent HO as they 
move along the track. Apart from a huge amount of signaling 
data generation, they can also encounter severe issues like 
RACH failure, late HO, Radio Link Failure (RLF), and 
Release with Redirect (RwR). Futuristic mobile networks with 
smaller footprint small-cells will cast an even bigger risk. 
To address this problem, authors in [89] presented a HO 
minimization technique where they propose to install an 
antenna on top of the train that will perform connectivity and 

trigger HO with covering BSs. Network deployment approach 
has been demonstrated in Fig. 11. This elevated antenna 
interfaces with an inner-train network to serve the passengers. 
Thus, instead of several users performing HOs 
simultaneously, only one HO will be performed by the 
elevated antenna. This not only reduces signaling load, but 
also minimizes the risk of HO failure as UEs will not 
experience penetration loss of 20-30 dB inside the train. Field 
trial conducted on a 2.4km run showed downlink throughput 
of 1.25Gbps. 
The concept of elevated antenna seems practical and is studied 
even by 3GPP [90]. However, single point of failure lies on its 
very foundation; if elevated antenna fails and observes HO 
failure then the multiple users being served under that antenna 
will have disrupted data transmission. Intelligent switching of 
the elevated antennas based on proximity to the BS can not 
only avoid HO failure but also deliver high throughput due to 
better SINR, but at the cost of complexity and cost. Another 
drawback will be the latency due to the addition hop between 
the top-mounted antenna and the inside-train UEs. As a result, 
self-driven trains in the near future might not achieve the 
required latency QoE goal. 

B. Changing Core Network (CN) to Achieve Latency 
Goals 

Authors in [11] studied the latency, HO execution time, and 
coverage of four live LTE networks based on 19,000 km of 
drive tests. The test was conducted in a mixture of rural, 
suburban, and urban environments. Their measurements 
reveal that the lion’s share of latency comes from the core 
network rather than the air interface. Based on the study in 
[11], Johanna et al. [91] proposed a new entity called the edge 
node that integrates MME and control plane part of SGW and 
PGW. Each edge node covers several BS, and when UE 
moves to coverage of another edge node, the application 
server and gateway is also shifted to minimize the latency. 
This approach helps to reduce latency for every HO done 
within BSs connected to the same edge node. However, HO 
associated with inter-edge node is followed by IP address 
reassignment and application-server transfer, which adds to 
delay and data interruption. 
Keeping in view that the number of 5G subscriptions will be 
2.6 billion by the year 2025 [1], authors in [5] suggested a 
simplified 5G core network which will be connectionless, and 
will incorporate the best effort without the support for node 

 
FIGURE 11. Directional network deployment using RRHs [89]. 
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mobility. The core idea is to have a legacy internet-like core 
network that will not be QoS centric, and the majority of the 
traffic will flow through default bearers only. Experiments 
were conducted on a smartphone to show that video streaming, 
web browsing, and messaging will work well, thus, the future 
core network can be radically simplified, resulting in a cost-
effective solution. The authors in [5] mainly focused on a 
simplified core network with low complexity. Over-
simplification of core network is not a practical approach as 
major functionalities of billing and access control cannot 
proceed. Similarly, IP re-allocation at every single HO is not 
feasible and may result in high latency or even packet loss. 

C. C/U Plane Split 
With improvement and advancement in the hardware 
technology, telecom operators can benefit from decoupling 
control and user plane (see Fig. 12). By doing so, future mobile 
networks with the composite of macro-cells and small-cells 
can be used intelligently for efficient resource utilization. 
Moreover, signaling overhead from large number of HOs can 
be minimized by assigning control plane and user plane to 
macro-cells and small-cells respectively. 
Authors in [92] address mobility support for high density, 
flexible deployment of small-cell architecture with flexible 
backhaul using Localized Mobility Management (LMM) 
technique. The first step centralizes control-plane from small-
cells to a Local Access Server (LAS). The second step allows 
individual small-cells to handle the mobility events, but still 
requires the LAS to act as a mobility anchor. Analytical model 
based on discrete time Markov chain is used to evaluate the 
average HO signaling cost, average packet delivery cost, 
average HO latency and average signaling load to the core 
network. Results show that average HO latency decrease by 
10ms compared to the 3GPP scheme [11]. 
Authors in [93] minimized signaling overhead in a 5G 
network with a high density of mmWave BSs serving users 
under the umbrella of macro BSs. C/U split was employed 
where macro BS provides the control plane and several 
mmWave cells were group into clusters. Inter-cell HO 
signaling was curtailed by using a gateway cluster controller, 
resulting in signaling reduction in the core network as well. 
Results show that normalized X2 signaling overhead reduces 
from 100% to 10% as the density of the deployed mmWave 
cells increases. 
Authors in [94] targeted latency minimization in their 
proposed novel mobility management scheme for intro-
domain handover (HO within the same SDN domain) and 
inter-domain handover (HO across different SDN domains). 
Layer 2 information and buffering approach was used to 
achieve HO latency of just 400ms compared to the legacy 
DMM with 100ms of HO latency. 
While proactive mobility management and mobility-oriented 
network planning seem to deliver promising results, the 
constant temporal variations in a live network and the 
importance of key landmarks can be addressed by introducing 
Artificial Intelligence (AI) to the cellular network domain. 

VI. AI-ASSISTED MOBILITY MANAGEMENT 
In recent years, AI has gained much popularity for proactively 
managing mobility in future cellular networks. This is 
primarily because of an increasing number of configuration 
parameters and due to the complex interaction between 
network parameters and associated KPIs (as illustrated in Fig. 
8). Once the research community is able to overcome those 
complex challenges, AI-assisted solutions will have a 
revolutionary effect on the telecom industry. The tutorial 
section (Section II) of this paper can help researchers 
understand the convoluted interplay between the network 
parameters and affected KPIs. Now we will present some of 
the AI enabled mobility management solutions present in the 
literature. The comparison of the presented algorithms can be 
found in Table VIII. 
The mobility prediction algorithm is presented in [95]. 
Authors use realistic mobility patterns to capture the human 
movement and a 3GPP compliant 5G simulator was used to 
represent the HetNets scenario. Results show that mobility 
prediction accuracy of almost 87% can be achieved for 2dB 
shadowing with XGBoost compared to 78% with Deep Neural 
Network (DNN). The work can be extended by using time 
series predictors such as recurrent neural network or LSTM. 
Authors in [96] employed XGBoost supervised machine 
learning algorithm to perform partially blind HOs from sub-
6GHz to co-located mmWave cell. Authors show that this 
machine learning-based algorithm to achieve partially blind 
HOs can improve the HO success rate in a realistic network 
setup of co-located cells. The proposed algorithm should be 
compared with the existing HO approach in terms of energy 
efficiency and RLF to further validate the efficacy of the 
algorithm. 
The idea of inter-frequency HO from a macro-cell to a non-
co-located high frequency cell with a much lower footprint is 
presented in [97]. The authors use the Random Forest 
classification approach and also presented a use case of load 
balancing by which an efficient resource utilization for the 
static users can be achieved. The shortcoming in the presented 
approach is that for high-speed users, the load balancing based 
HO to smaller footprint cell may be inefficient due to large HO 
rate and the resultant signaling overhead and chances of HO 
failure. 
Authors in [98] develop a Reinforcement Learning (RL) based 
HO decision algorithm for the mmWave cells by taking into 
account the user experience as a weighted sum of throughput 

 

FIGURE 12. Frame structure for legacy LTE vs C/U plane split 
architecture. 
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and HO cost. Based on the user’s mobility information, the 
optimal beamwidth is selected by considering the trade-off 
between the a) directivity gain and b) beamforming 
misalignment. The algorithm approves the HO trigger for 
mobile users depending on UE velocity and BS density. The 
work can be extended by evaluating the signaling overhead 
reduction and throughput gain achieved when compared with 
other existing algorithms in the literature. 
Authors in [99] predicted the RSRP of the serving and the HO 
target cell using Long Short-Term Memory (LSTM) and 
Recurrent Neural Network (RNN). The algorithm also 
predicts RLF instances with an accuracy of 84% using only 
RSRP as an input feature. An extension to [99] has been made 
in [100] where other features like SINR, out-of-sync identifier, 
RACH issues, and max RLC retransmission have been used 
for RLF prediction. 
A wrong HO avoidance algorithm has been proposed in [101]. 
It uses neural networks to prevent the HO to BSs which are 
affected by the undesirable radio propagation scenarios in the 
network, e.g., coverage hole caused by an obstacle. The 
proposed algorithm enables a UE to learn from past 
experiences (coverage unavailability) to select the best cell for 
HO in terms of QoE. The authors show that their algorithm 
helps achieve users to successfully complete the downlink 
transmissions more than 93% of the time. However, the 
simulation environment is quite simplistic where the UE 
traverses a straight line with only three BSs along the way. 
Hence, the movement of UE is almost deterministic, and the 
Neural Network can easily learn its pattern and can identify 
the optimal BS to perform HO. Furthermore, a single test UE 
gives a limited evaluation of the proposed algorithm. 
Elaborated results with a HetNet scenario and arbitrary 
movement of multiple users will have more realistic results.  
Based on HO attempts per hour, authors in [102] cluster cells 
into different groups with similar HO profiles using the K-

means algorithm. For each cluster, hourly HO attempts were 
forecasted using linear regression, polynomial regression, 
neural networks and gaussian processes. the highest R2 value 
of 0.99 was obtained when using the gaussian process. The 
proposed model then checks for abnormal HO behavior e.g. 
ping-pong. Future work can be to proactively predict abnormal 
HO behavior ahead of time and to recommend suitable 
proposed parameters to prevent HO KPI degradation. 

VII. FUTURE RESEARCH DIRECTIONS AND 
CONCLUDING REMARKS 
Ultra-Dense Cellular Networks (UDN) containing mmWave 
based small-cells are being considered an essential part of the 
future vision of cellular systems vis-à-vis 5G and beyond. 
Harnessing mmWave spectrum has a strong potential to solve 
the two long-standing problems in cellular networks: spectrum 
scarcity and interference. Remarkably, most research towards 
UDN remains focused on channel modelling and hardware 
design aspects of the mmWave based UDN, and mobility 
management in UDN so far remains a Terra incognita. The 
panorama of mobility challenges arising in emerging mobile 
networks implies that if no drastic and timely measures are 
taken to rethink mobility management for future UDN, user 
mobility management can become the bottleneck in practical 
deployments of UDN despite advances in the hardware design 
of mmWave and conventional spectrum based small-cells. 
Enabling seamless mobility in futuristic mobile networks 
require much complex network design and planning in order 
to achieve the QoE goals and to address the intricacies of the 
network architecture needed to realize the promised user 
experience. The high throughput requirement, heterogeneity 
of UEs and BSs, and security awareness of 5G environments 
appeal for a fast, distributed and privacy preserved mobility 
management. This article provides an extensive survey of 
mobility management for future cellular networks. As studied 
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[95] 
XGBoost 
DNN 

   ✔ ✔    User Mobility Prediction 

[96] XGBoost ✔        Semi Blind HO from sub-6GHz to co-located 
mmWave BS 

[97] Random Forest ✔       ✔ HO to non-co-located mmWave BS 

[98] 
Reinforcement 
Learning ✔  ✔      QoE aware HO to mmWave cell 

[99] LSTM / RNN   ✔ ✔     Future RSRP prediction and RLF avoidance 

[101] Neural Networks   ✔      HO prevention to BSs with coverage holes 

[102] 
K-Means 
Gaussian Processes 

 ✔    ✔   HO performance monitoring through KPI data 
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in the prior section, researchers have added healthy 
contributions in an attempt to realize an optimal and 
satisfactory network. However still, some research domains 
are untouched or haven’t been given the attention they 
deserve. Now we will discuss a few of the key points related 
to future research directions: 

A. HO Delay Based SINR Distribution 
Current SINR modelling is based on best-server-association, 
however, the UE always camp on the second-best cell prior to 
HO. This is the result of the HO evaluation process [18] which 
ensures that the target cell is the best candidate cell for HO. A 
mobility oriented SINR distribution which captures the 
temporal negative SINR [103] before HO needs to be studied 
for more realistic throughput estimation.  

B. HO Delay Based Uplink Interference 
Current researchers do not consider the practical situation 
where due to intra-frequency HO delay, high mobility users 
are closer to the target cell while still being served by the 
comparatively farther located serving cell. Under those 
circumstances, high uplink power to achieve target SINR in 
the serving cell can cause strong temporal interference in the 
target cell. The issue can be aggravated under highly dense 
BSs deployed in an impromptu fashion. However, this 
problem can be tackled by utilizing an eICIC ABS (Almost 
Blank Subframe) scheme for highly mobile users. Proactive 
HO trigger can also eliminate the possibility of high uplink 
RSSI by performing timely HO. 

C. Latency Goals 
Another challenging aspect of the small cell deployment is 
that the small-cells are typically not directly connected to the 
core network and lack Xn or N2 interfaces (for inter-cell 
communication) which are the real means of coordinating 
mobility procedures in the macro-cells. The lack of a low 
latency connection to the core network can contribute to 
significant HO signaling delays. 

D. Energy-Efficiency 
Achieving both UE and network-level energy efficiency is a 
big challenge for futuristic cellular networks, especially when 
considering ultra-dense BS deployment and the addition of a 
wide variety of user devices. Most of the existing energy-
saving schemes have a common tenancy; cells are switched 
ON/OFF reactively in response to changing cell loads. A 
meritorious effort has been made by Hasan et al. in [57], where 
authors proposed the AURORA framework in which the past 
HO traces are utilized to determine future cell loads. The 
prediction is then used to proactively schedule small-cell sleep 
cycles. Load balancing is also achieved through the use of 
appropriate Cell Individual Offset (CIO). 

E. Smart Intra-Frequency Search 
Dense deployment poses challenges for small-cell discovery 
as conventional cellular networks broadcast a neighbor list for 
the user to learn where to search for potential HO cells. 
However, such a HO protocol does not scale to the large 

numbers of neighboring small-cells and the underlying 
network equipment is not designed to rapidly change the 
neighbor cell lists as small-cells come and go. 

F. Smart Inter-Frequency Search 
Inter-Frequency (IF) mobility is a vital component of cellular 
networks but has not got the attention it deserved in the 
research community. IF-mobility requires event A2 to be 
triggered, which is followed by the BS to configure 
measurement gap periodicity to the UE. However, this process 
interrupts data transmission and reception. This is because UE 
shifts the radio to measure appropriate IF-cell(s). Futuristic 
mobile networks with a variety of frequencies ranging from 
HF to mmWave band may require the UE to undergo an 
extensive search of available frequencies before initiating a 
mobility decision. This issue can be aggravated when 
considering the latency goal of <1ms. 

G. Improving Mobility Load Balancing 
Mobility Load Balance (MLB) is a vital component of 
heterogeneous multi-layer cellular networks and are open to 
the following challenges:  
 LB can be achieved at four different instances as shown in 

Fig. 13. It can be triggered through i) idle mode SIB4 
configuration, ii) after network access using A4 or A5 
measurement report, iii) in connected mode using A4 or 
A5 measurement report (as configured), iv) when UE is 
released from connected to idle mode using 3GPP 
proposed IMMCI (Idle Mode Mobility Control Info). In 
IMMCI, traffic steering is achieved by varying the idle 
mode SIB5 priority of the serving or target layer. LB in idle 
mode is the most optimal as signaling and data interruption 
associated with connected mode LB can be avoided. 
Moreover, complexity in parameter configuration and 
management by IMMCI can be minimized. Research 
contributions are currently lacking for idle mode load 
balancing. Similarly, a new variant of IMMCI (SON 
based) is needed which can adaptively steer traffic to 
achieve load balancing under varying load conditions. 

 LB detail procedure has not been provided by 3GPP and is 
left intentionally to vendors for innovation purposes. LB 
requires the exchange of load information between 
participating BSs via the Xn interface. However, different 
vendors have their own proprietary version of LB 
implementation, thus, inter-vendor BS cannot perform LB 
due to mismatch in LB metrics. The existing LTE networks 
deploy offloading feature, where high load cell offload 
users to another vendor cell without considering its load 
condition. This can cause service rejection and ping-pong 

 

FIGURE 13. Load Balance (LB) opportunities (i, ii, iii, iv) in different stages 
of 5G UE connection. 
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HO conditions. The frequent IF-search will disrupt 
continuous reception and will result in higher latency. 5G 
heterogeneous network can assume numerous vendors, 
and to benefit from the load balancing feature, a standard 
inter-vendor LB mechanism need to be devised. 

 Cells with smaller footprints will have few serving UEs, 
and mobility-based ingress and egress of even a single user 
can have drastic load imbalance among available 
frequency bands. Hence, ways to achieve proactive LB is 
mandatory to have fairness and efficient resource 
utilization. 

H. Mobility in mmWave Networks 
mmWave with bandwidth as large as 500MHz is the remedy 
to the spectrum saturation in the HF band, however, an 
intrinsic feature of narrow beams can pose serious challenges 
in supporting mobility in the emerging cellular networks. Few 
of the main challenges are presented here: 
 Simic et al. [104] practically demonstrates mmWave to 

prove multi-Gbps connectivity but conclude that 
supporting mobility is a very challenging task due to the 
outage area of as high as 40% with 90BS/km2 deployment. 
The reason for the coverage hole is the high diffraction 
phenomena in mmWaves, and absence of Non- Line of 
Sight (NLoS) paths.  

 Corner Effect: Indoor areas have cell edge near doors, 
where the user is more likely to make a sharp turn and 
hence, time available for HO would be very less especially 
in the 60GHz mmWave scenario. This issue suggests that 
some sophisticated techniques, other than conventional 
methods are required for the HO trigger. 

 Current mmWave standards such as IEEE 802.11ad 
follows the max-RSSI based approach for UE-BS 
association, however, this solution appears rudimentary 
and ineffective for emerging network with an ultra-dense 
BS density. There will be chances of an unbalanced 
number of users per BS, and ping-pong HOs will be highly 
likely. 

 In addition, cell discovery for mobile users is a major 
challenge due to the absence of Reference Signal (RS) 
broadcast as in HF bands.  

Presently, an overwhelming understanding of the research 
circle is to use mmWave-cells for static users only. Intricacies 
of mobility between the beams (of both intra-frequency cells 
and inter-frequency cells) need to be addressed to support 
mobility. One possible solution is to come up with a hybrid 
solution where HF macro-cells with much accurate UE 
location guide the UEs how, when and to which small-cell 
they need to connect to. This is similar to control-data split 
architecture with mmWave providing data support while UE 
is under the coverage of macro-cell providing control signals. 

I. Low-Cost Multi-Connectivity 
Dual connectivity architecture has been proposed to mitigate 
mobility management problems in HetNets by allowing UE to 

connect with the macro-cell for control connectivity as well as 
simultaneous data connectivity with small-cells.  
The effect of the user association on dual connectivity 
performance is an interesting research problem that needs to 
be investigated in detail. Researchers need to study the gain 
dual connectivity can yield in terms of HO overhead 
reduction, synchronization complexity, and radio resource 
efficiency.  
Most of the research work address reliability and latency goals 
through multi-connectivity, however, signaling load 
increment is not addressed. More efficient proposals with 
special consideration of signaling load need to be devised. 

J. Accurate and Efficient Mobility Prediction 
The mobility prediction schemes are seen as a driving force 
for context aware cellular network as they are used to 
proactively reserve resources, trigger LB, and 
activate/deactivate small-cells. Few challenges associated 
with mobility prediction are: 
 Users not willing to share location information due to the 

privacy reasons. 
 GPS data acquisition consume user battery and intermittent 

accessibility requests resulting in signaling or RACH 
issues (some RACH failure issues cannot be seen in the 
KPI data). 

 Accuracy and reliability of 3GPP proposed Minimization 
of Drive Test (MDT) feature is needed to be evaluated 
since multitude of factors like the GPS error [105], 
quantization resolution etc. affect the accuracy of the 
measurements reported by the UE. 

 Although human trajectory exhibits high predictable 
component [56], however, mobility prediction is always 
bound to have some inaccuracy as can be understood 
through an example: an office employee may have lunch 
in a canteen, in a conference room, with colleagues in an 
outside restaurant etc. These random variations are almost 
impossible to predict. 

A possible solution can be resource reservation to be done in 
the multiple neighbors, however, the cost of signaling and 
available resource for other UEs especially during busy hour 
needs to be considered. 
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