
1

Entropy Field Decomposition Based Outage
Detection for Ultra-Dense Networks

Ahmad Asghar∗, Hasan Farooq∗, Haneya Naeem Qureshi∗, Adnan Abu-Dayya†, Ali Imran.∗,
∗Department of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK 74135 USA

†QMIC, Qatar Science & Technology Park, Doha, Qatar

Abstract—Ambitious quality of experience expectations from
5G mobile cellular networks have spurred the research towards
ultra-dense heterogeneous networks (UDHNs). However, due to
coverage limitations of millimeter wave cells and lack of coverage
data in UDHNs, discovering coverage lapses in such 5G networks
may become a major challenge. Recently, numerous studies have
explored machine learning-based techniques to detect coverage
holes and cell outages in legacy networks. Majority of these
techniques are susceptible to noise in the coverage data and only
characterize outages in the spatial domain. Thus, the temporal
impact of an outage, i.e., the duration of its presence remains
unidentified. In this paper, for the first time, we present an
outage detection solution that characterizes outages in both
space and time while also being robust to noise in the coverage
data. We do so by employing entropy field decomposition (EFD)
which is a combination of information field theory and entropy
spectrum pathways theory. We demonstrate that compared to
other techniques such as independent component analysis and
k-means clustering, EFD returns accurate detection results for
outage detection even in the presence of heavy shadowing in
received signal strength data which makes it ideal for practical
implementation in emerging mobile cellular networks.
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I. INTRODUCTION

QUALITY of experience (QoE) enhancement compared
to legacy mobile cellular networks is the primary drive

of 5th Generation mobile cellular networks [1]. To enable this
QoE enhancement, 5G networks will rely on a combination of
factors including 10x more throughput, less than 1 ms latency,
and 10x more battery life than 4th Generation mobile cellular
networks [2]. To meet these expansive requirements, several
solutions have been proposed [3], with network densification
[4] and millimeter wave (mmWave) spectrum utilization [5]
among the most popular. It has been demonstrated that a
combination of network densification and mmWave spectrum
deployment could potentially yield exponential increase in area
spectral efficiency [6].

However, network densification and mmWave spectrum
utilization are not without their own limitations. Ultra-dense
heterogeneous networks (UDHNs) are prone to generating
sparse network coverage information due to low user density
per cell [7]. On the other hand, mmWave cells are subject to
very high pathloss due to their operation in 30GHz - 300GHz
band. One solution to reduce the impact of high pathloss
in mmWave cells is the deployment of highly directional
antennas with beam-widths as low as 7◦ [8]. However, this

opens mmWave cell networks to the problem of very large
coverage gaps that must be filled by additional antennas per
cell compared to traditional macro cells or by employing
umbrella macro cells.

The challenges above highlight the difficulties of ensuring
reliable and omnipresent coverage in mmWave-UDHNs, es-
pecially considering the QoE requirements for 5G networks.
Even without these challenges, ensuring coverage in mobile
cellular networks requires continuous network performance
testing and monitoring.

There are several causes of gaps in network coverage. Gaps
in network coverage may be a result of poor network plan-
ning. The network planning stage involves the determination
of many parameters, such as the optimal number of base
stations, the best locations to install base stations, the types
of base station optimal for each location, the configuration
of parameters such as antenna height, number of sectors and
sector orientation, tilt, power, frequency reuse pattern, capacity
dimensioning (e.g. number of carriers or carrier components
per sector) [9]. Erroneous configuration of these parameters
during the planning stage results in gaps in network coverage.
Gaps in network coverage may also arise when changes occur
in the radio environment. This could be due to environmental
factors, such as changes in weather conditions, vegetation,
topology, or construction of new infrastructures (e.g., high
rise buildings or bridges) which could result in degradation of
network coverage due to blocking. Gaps in network coverage
could also result from partial or complete outages. This could
be due to hardware and software failures (e.g., radio board
failure, channel processing implementation error etc.) and
external failures such as power supply or network connectivity
failures [10].

While some cell outages are detected by operations support
system functions using performance counters or alarms, some
outages may not be detected for hours or even days. These
outages are often detected through continuous long term
performance analysis or subscriber complaints [10]. Therefore,
coverage gaps due to poor network configuration or changes
in radio environment causes (also known as coverage holes)
require mobile cellular network operators to invest heavily
in regular network coverage testing, usually through drive-
tests. However, the process is time and resource consuming
while lacking comprehensiveness due to inaccessibility of a
major portion of the network i.e., all areas other than paved
roads. On the other hand, identifying and resolving cellular
network outages, which are a consequence of software or
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hardware failure of network entities and do not raise an
explicit alarm in operation and maintenance, requires highly
trained engineers parsing gigabytes of network health logs and
network performance indicator data looking for outages. This
requires manual analysis and may require unplanned site visits,
which makes cell outage detection a costly task [10]. Given
the continuous growth in cell density and increasing pressure
to reduce operational costs [11], both of the above approaches
are quickly becoming impracticable [12], [13].

A. Related Work

To address the coverage hole and outage detection problem,
3GPP has introduced the minimization of drive test (MDT)
reports feature [14] that we use for baseline coverage data
in our work. MDT reports are a solution to the challenges
of periodic drive testing, high carbon footprint, and rising
operational costs of mobile cellular networks. These reports
consist of serving and neighboring cells identities, downlink
received power levels, and channel quality measurements. The
measurements are collected periodically by user equipment
(UE) in both connected and idle modes and are reported back
to the network along with their location tags. This offers
network providers a more detailed view of network coverage,
including indoor network coverage, compared to drive tests.
MDT reports have been used for designing coverage hole [15]–
[17], outage detection solutions [18]–[24], as well as other
self-organizing network (SON) functions [25]–[28].

1) Coverage hole and outage detection in mobile cellular
networks: Given the significance of the problem in network
service management, in the last few years, cell outage de-
tection has been studied extensively. Only a small subset of
studies is discussed here that is representative of the larger
discussion on state-of-the-art in outage detection research. For
a more comprehensive review of outage detection along with
outage diagnosis and compensation techniques, the reader is
referred to a recent review paper [29].

Most prior studies on outage detection have focused on
homogeneous macro cellular networks [20], [21], [23], [24],
[30]–[34], as large number of users per cell in macro cell
provide enough data for classic machine learning methods to
be trained for coverage anomaly detection. For example, in
[30] the authors employ k-nearest neighbor (kNN) [35] and
local outlier factor (LOF) [36] techniques to detect coverage
anomalies in macro cell environment. The authors use the
two clustering techniques to separate cells into normal and
anomalous based on their received power measurements from
MDT data, and use expert analysis to determine the accuracy
of anomaly detection. In [21] the authors compare LOF with
one-class support vector machines (SVM) [37] using MDT
data with different levels of shadowing and inter-site distances.
The authors compare the Receiver Operating Characteristic
curves of the two techniques and demonstrate that for the
same shadowing and inter-site distance, one-class SVM out-
performs LOF considerably. Another work [23] detect outages
(or sleeping cells) in a smart-city LTE telecommunications
infrastructure using machine learning, where network users
are represented by IoT devices. The authors in [23] compare

performance of several machine learning algorithms, such as
support vector machines and ensemble learners (bagged deci-
sion trees, random forests and extra trees), decision trees and
naive bayes. However, the focus of [23] was not to investigate
performance of these algorithms under varying propagation
and shadowing conditions and remained confined to the re-
ceived power being computed according to the empirical Cost-
Hata propagation model only. Another work addressing the
same problem of sleeping cell detection in macro cells is
[24]. In this work, the authors use deep autoencoders and
one class support vector machine using the parameters of
RSRP, SINR, location and cell ID. However, the authors
do not study the impact of varying propagation conditions
or shadowing in this work and the standard deviation of
shadowing is limited to 4 dB for line-of-sight scenarios and
6 dB for non-line-of-sight scenarios. Using RSRP and RSRQ
measurements, authors in [20] propose a cell outage detection
method using an autoencoder. The authors in [20] first train
the autoencoder neural network by the measurement reports
from mobile stations, and then compare the reconstruction
error of a new measurement report with a specified decision
threshold to differentiate between outage and normal class.
However, this work [20] does not mention the shadowing level
or propagation environment. Another MDT-based approach to
investigate cell outage detection in heterogeneous is proposed
in [38], where a dynamic affinity propagation algorithm is
used. Outages in this work are generated by reducing the
transmission power of a specific cell to represent the hardware
failure of cell outage beforehand. However, the effect of
shadowing on proposed cell outage detection algorithm is not
the focus of this work. Moreover, these works [20], [21], [23],
[24], [30]–[34], [38] address the outage detection problem in
a homogeneous macro cell environment only.

Apart from the use of MDT data for outage detection,
some studies such as [31]–[33] also propose to use cell
level performance metrics such as uplink and downlink data
rates, radio link failures, and handover failures to detect
network outages. In [31], [32] the authors use SVM and auto-
regressive integrated moving average (ARIMA) to identify
network anomalies using network throughput data. The authors
construct healthy network performance models using the two
techniques and predict future cell performance data from those
models. If there is a significant deviation between actual and
predicted data, the algorithm determines that the cell is in
outage. In [33] the authors use handover and radio link failure
data to predict network outages in the network. The authors
create a diffusion map of changes in user associations due
to handover and call failure events. The solution then maps
the user association changes to cell dominance areas in the
diffusion map. Finally, the solution runs k-means clustering
algorithm [39] to detect the cell with abnormal changes in
user associations.

A key insight from the studies discussed above is that the
availability of sufficient data for model training and outage
prediction is not a major concern in homogeneous macro
cell networks. However, the same does not hold true for
heterogeneous networks, especially with very high cell density
as it results in very small number of users per cell (¡ 2 UE/cell)



3

[7]. To address the training data sparsity challenge, the authors
of [22] propose to generate cell coverage maps from sparse
network coverage data by employing Grey prediction model
[40] to interpolate coverage data between randomly distributed
locations of users sending MDT reports. In [22] the authors use
LOF and kNN to detect outages from the data generated using
Grey prediction. Another work [18] addresses the training data
sparsity challenge through Generative Adversarial Network
(GAN). In this work, the authors present a method that is
able to learn from imbalanced cell outage data in cellular
networks, through GAN and Adaboost. Using RSRP and
RSRQ dataset, first, GAN is utilized to change distribution
of imbalanced dataset by generating more synthetic samples
for minority class, and then Adaboost is used to classify the
dataset. However, the focus of this work is detection of outages
in a macro cell environment with one level of shadowing only.

In contrast to the plethora of studies on cell-wide outage
detection, only a few studies have addressed the problem of
coverage hole detection [15]–[17]. In [15] the authors argue
that MDT report data does not necessarily represent a complete
network coverage picture. Therefore, they apply Bayesian
prediction framework on a real network MDT report data
to predict missing data and generate radio network coverage
maps. These maps are then used to predict the presence
of coverage holes by estimating their likelihood based on
neighboring pixel. The algorithm in [15] is extended in [16]
to use four neighboring pixels, instead of one, to construct
the network coverage environment map. Moreover, the au-
thors use Bayesian kriging and interference cartography to
generate these maps, which improves the prediction accuracy.
In [17] the authors propose to use a combination of radio
link failures along with a piece-wise deterministic coverage
model to predict the boundaries of coverage and, consequently,
coverage holes. The use of deterministic coverage model in
[17] eliminates the uncertainty in coverage estimation due to
shadowing.

Despite advancements in coverage hole and outage detection
described above, there exist several key issues that need to
be addressed for such solutions to be applicable to mmWave
UDHNs:

a) Sensitivity to shadowing: Most of the existing cell
outage detection solutions are highly sensitive to shadowing.
This is a key observation made in [21] where authors inves-
tigate the impact of degree of shadow fading on the accuracy
of several outage detection algorithms. The authors have
shown that as the standard deviation of shadowing increases,
machine learning-based outage detection models become less
accurate ultimately becoming analogous to a coin toss. Similar
conclusions are made in [19], where the authors propose a
Long-Short Term Memory based femtocell outage detection
solution in a multi-tier network. The authors in [19] conclude
that when the shadow fading standard deviation is increased
from 4 dB to 8 dB, the overall detection accuracy decreases
significantly, which implies that outage detection task becomes
more difficult under harder shadowing conditions. Moreover,
the study in [41], which uses a hidden markov model based
outage detection algorithm, also concludes that the detection
accuracy degrades with higher shadowing standard deviation.

The same is true for accuracy of coverage hole detection
solutions which rely on neighboring pixel data to predict the
existence of a coverage hole [15], [16]. Since heavy shadowing
will be a feature of mmWave-UDHNs, a practical solution for
coverage hole and cell outage detection in such networks must
be robust to the effects of shadowing.

b) Inclusion of Spatio-Temporal Domains: Network cov-
erage is susceptible to randomness due to shadowing in both
spatial and temporal domains. However, prior studies, such as
the ones discussed above, only consider coverage information
in terms of spatial snapshots taken at certain time instants. This
implies that the solutions dependent on this information run at
each time instant with no information cascading to subsequent
time snapshots. This leads to the possibility of instantaneous
coverage holes or outages triggering outage compensation
algorithms if they occur at the time when the snapshot of the
coverage is being built, or coverage holes or outages being
missed out between the snapshots. Even the solutions based
on time-averaged models such as [31], [32], [42] do not offer
the temporal depth to deal with these instantaneous coverage
fluctuations. Similarly, while some studies employ temporal
coverage data to identify network anomalies [43]–[46], they do
not explicate the complete spatial impact of these anomalies on
the subscribers or their QoE. Given these issues, any coverage
hole or outage detection solution must consider both spatial
as well as temporal domains in the detection process.

c) Sensitivity to data distribution model: Many prior
studies discussed above that leverage tools such as k-means,
LOF, SVM, Bayesian kriging, or Bayesian prediction frame-
works build on specific distribution that data and noise are
assumed to follow. Many of these solutions assume data dis-
tribution to be either Gaussian, exponential or some variation
of the two. However, acute dynamics of mobile environment,
particularly those associated with mmWave UDHN can make
these assumptions invalid. Therefore, an outage detection
solution that does not rely on a-priori assumptions about
distribution of data is highly desirable, particularly to be
applicable for mmWave UDHN.

d) Coverage Hole and Outage Detection in mmWave
UDHNs: Recent study [47] shows that likelihood of outages
increases with cell density as well as complexity of the
cell hardware which will be the case in mmWave-UDHNs.
While some outage detection solutions have been proposed to
incorporate heterogeneous network topology, to the best of our
knowledge, a coverage hole or outage detection solution that
explicitly targets mmWave-UDHNs while addressing idiosyn-
crasies of such networks does not exist.

B. Proposed Approach and Contributions
In this paper a new approach for anomaly detection is

proposed, one that is based on entropy field decomposition
(EFD), an algorithm first introduced by Frank and Galinsky
[48]. EFD has previously been used successfully for brain
activity mode detection in biomedical engineering [49] and
the study of severe weather phenomenon [50]. However, EFD
has not been applied in the context of wireless communica-
tion networks. Results and observations by applying EFD-
based outage detection algorithm in the context of wireless
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communication networks show that such a solution can over-
come several limitations of existing solutions. Existing outage
detection solutions mostly apply statistical learning that are
not robust to shadowing. Their performance is sensitive to
data and noise distributions and they do not take coverage
profiles over a range of time as inputs to the outage detection
algorithms. Moreover, they mainly focus on outage detection
in macro cell environments and not in heterogeneous ultra-
dense environments. The analysis and observations from this
study show that an EFD-based approach offers a promising
solution to detect outages in such unconsidered scenarios.

The motivation for leveraging EFD to solve cell outage and
coverage hole detection problem stems from its ability to iden-
tify the flow of information in data over both space and time by
combining information field theory [51] and entropy spectrum
pathways theory [52]. Since outages in a cellular network
vary both spatially and temporally, an EFD based approach
to detect outages can be a promising solution. Furthermore,
EFD is independent of baseline data model/distribution and
it actively suppresses the effects of noise in activity mode
detection process. Since mmWave-UDHN environments are
marked by heavy shadowing with varying data distributions,
it makes coverage data in such environments noisy. Therefore,
an EFD based solution with the ability to suppress the effect
of noise can be a favorable solution for coverage hole and
outage detection in mmWave-UDHN environments.

The key contributions of this paper can be summarized as
follows:

• We present an EFD-based coverage hole and outage
detection solution that is independent of the signal propa-
gation model. This means that the solution can seamlessly
be integrated into other autonomous solutions regardless
of underlying coverage model.

• The proposed solution can identify and overcome the
impact of shadowing in the coverage data over both space
and time. This allows the solution to detect lapses in
coverage even in the event of heavy signal dispersion and
shadowing. We demonstrate this by comparing the accu-
racy of the solution in presence of different shadowing
levels.

• The proposed solution can incorporate data from both
spatial and temporal domains. The spatio-temporal char-
acterization of coverage holes and cell outages is a unique
feature of this solution that, to the best of the authors’
knowledge, has not been achieved so far.

• The proposed solution can detect outages in a realis-
tic heterogeneous deployment of small and mmWave
cells generated using a real-network planning software.
Moreover, using the key insights derived from perfor-
mance comparison of EFD-based solution with indepen-
dent component analysis and k-means clustering based
coverage hole and outage detection solutions, selection of
an appropriate outage detection solution based on radio
propagation environment conditions can be done.

The rest of the paper is organized as follows: Section II
describes the system model, Section III presents the proposed
EFD solution, Section IV presents the comparative perfor-

mance analysis. Practical deployment of proposed solutions
is also discussed in Section IV. Finally, Section V presents
the conclusions of this study.

II. SYSTEM MODEL

We consider single-cell connectivity for the sake of simplic-
ity. However, the proposed solution can be extended to dual
connected systems without any major modifications since the
aim is to identify outages and coverage holes, whether they are
at control plane or user plane level. We also assume that the
user association changes immediately after the outage which
is a reasonable assumption for UDHNs with overlapping cell
coverage.

A. Network Coverage

For the purpose of this study, we assume that a user is in
outage when the downlink received power of that user from
its associated cell P cr,u falls below a threshold P throut

i.e., :

Outage := P cr,u ≤ P throut
(1)

and in a coverage hole when P cr,u falls below a threshold P thrch
i.e., :

Coverage Hole := P cr,u ≤ P thrch (2)

where P thrch > P throut
. The rest of the discussion in this and

subsequent section will focus on outage detection but it lends
itself directly to coverage hole detection as well without any
changes.

To calculate P cr,u, we use the standard exponential pathloss
model, the log of which can be written as:

P cr,udBm
= f(P ct , Gu, G

c
u, b, d

c
u, β) + εcu (3)

where P ct is the transmit power of cell c, Gu is the gain of user
equipment, Gcu is the channel gain of cell c, b is the pathloss
constant and depends on the clutter, εcu is the shadowing at
the location of user u from cell c and usually assumed to be
log-normally distributed, dcu is the distance of subscriber u
from cell c, and β is the pathloss exponent. Assuming that
for a particular user u in cell c, Gu, Gcu, b, d

c
u and β remain

constant, we can re-write (3) as:

P cr,udBm
= f(P ct ) + ε (4)

Note that these parameters are assumed constant for each
distinct user only. These parameters vary for different users
according to the location of users and the propagation en-
vironment. Moreover, in our simulations, the function in
(3) captures the propagation environment features through
an advanced ray-tracing based realistic simulator that has
realistic path loss, shadowing and geographical information.
The system model is further described in detail in Section
IV. Each subset P̂t of the set of cell transmit powers Pt will
result in a different set of received powers Pr. As such, we can
define the likelihood of receiving a set of downlink received
powers Pr given some set of transmit powers P̂t as:

p(Pr) =

∫
p(Pr|P̂t)p(P̂t)dP̂t (5)
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In the event of a cell outage, the loss of transmission from
the affected cell will result in a unique set of downlink received
powers Prout . Given this set of received powers, we can find
the set of transmit powers including the affected cell transmit
power using Baye’s rule as:

p(P̂t|Prout) =
p(Prout , P̂t)

p(Prout)
(6)

III. ENTROPY FIELD DECOMPOSITION

For a deterministic system with a fixed signal propagation
model and no shadowing, the estimation of (6) is simply a
question of going through all the subsets P̂t and calculating
the resulting sets Pr. However, for a system with random
variations in the signal, this estimation becomes more com-
plex. Furthermore, if these random variations affect the system
both spatially and temporally, as is the case in real mobile
cellular networks, obtaining the conditional probabilities in
(6) becomes intractable. However, one method of obtaining
an estimate of these probabilities which has been explored in
[51] is to use information field theory which represents the
probability distributions in terms of an information field. In
our case, we must first represent the transmit power or signal
data as an information field such that:

Pt(xl, yl, tl) ≡ Pt(ζl) =
∫
ϑδ(ζ − ζl)dϑ (7)

where ζl = xl, yl, tl represents the transformation of spatial
coordinates xi, yi, i = 1, ..., NM and temporal coordinate
tj , j = 1, ..., O as a point on the information field ϑ. The
key descriptor of an information field is the Hamiltonian H
which corresponds to the total energy of the field [53] and is
defined as:

H(Pr,ϑ) = −ln p(Pr,ϑ) (8)

Using the above transformations, (6) can be re-written as:

p(ϑ|Pr) =
eH(Pr,ϑ)

Z(Pr)
(9)

where Z(Pr) =
∫
eH(Pr,ϑ)dϑ is called the partition function.

Since the spatio-temporal received powers in a real network
are not independent of each other, we consider Pt(ζl) as
an interacting field [51] whose Hamiltonian can be derived
through Taylor series expansion of (8) as given in [48]:

H(Pr,ϑ) = H0 +
1

2
ϑ†D−1ϑ− j†ϑ+

∞∑
n=1

1

n!

∫
...

∫
V

(n)
ζ1...ζn

ϑ(ζ1)...ϑ(ζn)dζ1...dζn (10)

where D matrix is the information propagator, the vector
j is the information source, the (.)† notation represents the
adjoint of a matrix, and H0 is the free energy Hamiltonian
[53] which can be obtained by integrating the joint probability
p(Pr,ϑ) over Pr and ϑ. Since H0 is a consequence of an
interaction-less field, it simply acts as a scaling factor for
an interacting field. Also, since we assume that the received
power at each point is not independent of other points due to
shadowing and fading effects, we can safely ignore H0 for
this study. The terms V (n)

ζ1...ζn
represent the interactions of up

to n field components and are integrated over each coordinate.
The matrix D and vector j can be obtained by using the free

theory formalism for a Gaussian signal [51] and are given as:

D =
[
σ2
P̂t

−1
+ f(P̂t)

†N−1f(P̂t)
]−1

(11a)

j = f(P̂t)
†N−1Pr (11b)

where σ2
P̂t

= 〈P̂tP̂t
†
〉 is the covariance of the transmit powers

and N is the covariance of noise in the data.

The interaction terms V (n)
ζ1...ζn

can be obtained using entropy
spectrum pathways theory which ranks the optimal pathways
within a disordered lattice according to their path entropy [52].
To construct the entropy pathways, we must obtain a coupling
matrix Q of points on the information field lattice. This can
be done by generating an adjacency matrix Aij of spatio-
temporal points in the dataset Pr and using the transformation
ζl = xl, yl, tl to obtain the components of Q matrix as follows:

Q(ζi, ζj) = Pr(i)Pr(j)Aij (12)

It is important to highlight here that the Q matrix can be
used to represent any relationship between two or more points
in the network regardless of the signal propagation model and
the distributions of shadowing and fading. This is a major
advantage compared to other techniques such as Bayesian
classification that rely on some underlying assumptions re-
garding data and noise distributions which can lead to very
high misclassification error if the actual distribution differs
from the assumed one.

The information field can be reconstructed via entropy
spectrum pathways that allow the representation of the field
in terms of the eigenmodes of Q using Fourier expansion. In
mathematical terms, field components are given as:

ϑ(ζl) =

K∑
k

[akϕ
(k)ζl + a∗kϕ

∗(k)ζl] (13)

where ϕ(k) is the kth eigenmode, ak is the mode amplitude
of kth eigenmode and the ∗ operator refers to the conjugate of
a number, while K is the number of significant eigenmodes
considered for field transformation. A key insight here is
that by only considering the most important eigenmodes and
keeping K to a reasonably small value compared to the total
number of eigenmodes, we can obtain a decent estimate of
the information field, thus reducing the problem complexity
significantly. To test the importance of an eigenmode, we can
compare the corresponding eigenvalue λk with the determinant
of the noise covariance matrix N .

Using the above information, we can now obtain the trans-
formed information Hamiltonian H(Pr,ak) by:

H(Pr,ak) =
1

2
ak
†Λak − jk†ak +

∞∑
n=1

1

n!

K∑
k1

...

K∑
kn

Ṽ
(n)
k1...kn

ak1 ...akn (14)

where Λ is a diagonal matrix containing the eigenvalues of
Q, Ṽ (n)

k1...kn
represent the interaction terms of the eigenmodes,

and jk is the amplitude of the kth eigenmode in expansion of
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the information source j:

jk =

∫
jϕ(k)dζ (15)

To calculate the values of mode amplitudes, the Hamiltonian
is minimized with respect to the field and the field is replaced
with its transformation in terms of its eigenmodes which gives
[48]:

Λak = jk −
∞∑
n=1

1

n!

K∑
k1

...

K∑
kn

Ṽ
(n)
kk1...kn

ak1 ...akn (16)

If the field interaction terms V (n)
ζ1...ζn

are defined as powers
of the coupling matrix Q such that:

V
(n)
ζ1...ζn

=
α(n)

n

n∑
p=1

∏
m=1
m 6=n

QζpQζm (17)

then the mode interaction terms Ṽ (n)
k1...kn

are obtained by:

Ṽ
(n)
k1...kn

=
α(n)

n

n∑
p=1

(
1

λkp

n∏
m=1

λkm

)∫ ( n∏
r=1

ϕ(kr)(ζ)

)
dζ

(18)
where coefficients α(n) should be chosen sufficiently small
to ensure the convergence of (18). Using the formulation
presented above, we can obtain the posterior probability of the
field as defined in (9). The decomposition of the information
field into its modes provides a reflection of the field into its
independent modes.

A. Outage Detection Using Entropy Field Decomposition

The result of applying EFD to the coverage data is an
entropy field which identifies how information flows across
the spatio-temporal domains. In order to make this resulting
field output useful for outage detection in MCNs, algorithm
1 presents our proposed outage detection and localization
solution.

The algorithm takes user-cell association Uc information
from the MDT data and the network coverage data when no
outage is present in the network Prnorm , as well as real-
time spatio-temporal coverage data PrRT . The real-time data
is processed using EFD which outputs the data points where
high information flows are detected. In simple terms, the EFD
algorithm gives the boundary between outage and non-outage
effected areas. The points with high energy i.e., the points at
the boundary of the outage are passed to a localization module
which identifies the cell with which the high energy points are
associated. Once the degraded cell is identified, it is passed
as an output which can be fed to an outage diagnosis and
compensation algorithm.

B. Complexity Analysis of EFD-based Outage and Coverage
Hole Detection

The complexity of algorithm 1 depends on two key factors:
1) the size of input matrices Prnorm and PrRT and 2) the
duration of time over which outage detection is being done.
These factor define the size of adjacency matrix A which in

Algorithm 1 Outage Detection Using EFD

Require: Pt,Prnorm ,PrRT ,Uc

Ensure: ϑ(ζl), c in outage

1: Calculate Q from (12) using PrRT

2: Obtain eigenvalues and eigenvectors of Q
3: Calculate entropy field ϑ using the eigenvalues and eigenvectors

of Q from (13)
4: for l ∈ 1, ..., NMO do
5: if ϑl > 0 then
6: {u(xout, yout)} = {u(xout, yout)}+ u(xl, yl)
7: end if
8: end for
9: if {u(xout, yout)} = φ then

10: continue
11: else
12: for u(xout, yout) ∈ {u(xout, yout)} do {cout} = {cout} +
{c = argmax∀c∈C P

c
r,u(xout,yout)norm

}
13: end for
14: end if

turn defines the computation required to estimate the matrix
Q. Let N = M and L = N2 ∗ O, then A and Q are
LxL matrices. Calculating A is then O(L2) complex. Q
matrix calculation only requires us to replace estimate Qij
values at points where Aij 6= 0 which is O(log(L)) complex.
The eigenvalue decomposition of Q is O(L3) complex [54].
The reconstruction of ϑ(ζl) is O(K) complex based on (13).
Finally, identifying points with non-zero entropy is a simple
search action which is also O(log(L)) complex. Thus, the
complete algorithm is O(L3+L2+2∗log(L)) complex. Fig. 1
shows the complexity of the EFD-based outage and coverage
hole detection algorithm when N = M and O = 2 which
confirms the estimated complexity.

Fig. 1: Complexity of EFD-based outage and coverage hole
detection algorithm

C. Other techniques for outage detection

To evaluate the performance of EFD-based outage detection,
we compare it with two other techniques namely 1) indepen-
dent component analysis (ICA) [55] and 2) k-means clustering
[39]. Both these techniques are briefly described here before
the discussion on simulation details and results.
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1) Independent Component Analysis: Just like EFD, ICA
is an unsupervised clustering technique and is highly useful in
real datasets where the noise distribution in the source signals
may not always be Gaussian. ICA finds clusters in a dataset
in the form of source signals which can be used to reconstruct
the received signals such that:

Pr = A ∗ Pt (19)
where Pr is the received signal vector, Pt are the source signal
vectors and A is the weight matrix for signal reconstruction.

There are several methods of estimating Pt andA including
projection pursuit, infomax, maximum likelihood estimation
[56], and reconstruction ICA [57]. For the purpose of this
study, we have employed reconstruction ICA.

2) k-means Clustering: k-means clustering is another com-
monly used unsupervised clustering technique. The k-means
clustering algorithm splits the data into k separate clusters
based on their distance from randomly distributed means. The
most common implementation of k-means clustering is also
referred to as Lloyd’s algorithm [58] which iteratively updates
the values of the k different means based on the distance
between the means and data points. The algorithm begins by
assigning each data point Prp to a set of points S(t)

i which
are closest to the mean µi in terms of Euclidean distance such
that:

S
(t)
i = {Prp : ||Prp − µ

(t)
i ||

2 ≤ ||Prp − µ
(t)
j ||

2∀j, 1 ≤ j ≤ k}
(20)

The means are updated based on the new sets or clusters
such that:

µ
(t+1)
i =

1

S
(t)
i

∑
Prp∈S

(t)
i

Prp (21)

The algorithm continues to update the means until it con-
verges or some stopping criteria for distance is met.

IV. SIMULATION AND RESULTS

In this section, we analyze the performance of the proposed
EFD based solution for detection of coverage holes and net-
work outages in spatial and temporal dimensions. We present
results for different outage scenarios, as well as different levels
of shadowing.

A. Simulation Setup

To obtain coverage data, we simulate an ultra-dense network
of mmWave cells and small cells which will be typical in
a 260m x 260m area of downtown New York City. The
network layout of this area showing site deployment is shown
in Fig. 2. The coverage data is generated using Atoll Radio
Planning Software [59]. The geographical information of the
network scenario is shown in Fig. 3. The geographical data
comprising of geo raster data and geo vector data was used
to depict a realistic scenario. The raster data gives a grid-
based representation of the terrain with a defined resolution.
The raster files we used are DTM (Digital Terrain Model)
representing the elevation of the ground over sea level, clutter
classes representing the type of terrain (land cover or land

Fig. 2: Network layout showing sites deployment.

use) and clutter heights (also called a digital height model)
representing individual heights (altitude of clutter over the
DTM, for example, building heights). Each pixel of a clutter
class file contains a code which corresponds to a certain type
of ground use or cover. In the clutter height file, a height
is given for each point on the map. The geo vector data
models the buildings and their height, in the form of one or
several ArcView SHP files. A 5m resolution was sufficient to
capture the propagation characteristics for our study. A lesser
resolution was providing redundant information and a using a
greater resolution led to missing information. All of these geo
files were incorporated into our model to represent a realistic
scenario. Different clutter types have different shadowing
effects. Therefore, in our simulations, each clutter type has
different standard deviation per frequency representing its
shadowing characteristics. The range of shadowing standard
deviation for different clutter classes is given in Table 1.

The small cells (red) are configured to operate in 2GHz
frequency spectrum with omni-directional antennas, while the
mmWave cells (green) are configured to operate in the 28GHz
spectrum with directional antennas. Antenna specifications for
mmWave cells were obtained from [60]. Among the different
ranges of mm-wave antenna gains [61], [62], we chose an
antenna gain towards the lower end to show the performance
of the proposed algorithm under more stringent conditions.
This is because when an outage is simulated by switching
off (reducing transmission power of) a cell with high gain
antenna, it is easier to detect that outage as compared to the
case when an outage is simulated by switching off (reducing
transmission power of) a cell with low gain antenna. Note that
since the proposed algorithm does not have to rely on details
of beamforming, we do not implement a beamforming model.
We only model realistic static antenna pattern.

The path loss model was chosen to be aster propagation
model [63], rather than empirical or semi-empirical path loss
models, that are based on measurements in a specific envi-
ronment and limited in their ability to capture idiosyncrasies
of various propagation environments. In contrast, we employ
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(a) Digital height model. (b) Digital land use map. (c) Digital terrain model.

Fig. 3: System model geographical information.

mmWave and standard Aster propagation model which use
advanced ray tracing for mmWave and small cell pathloss
calculation while taking factors such as clutter information,
atmospheric absorption, and frequency-selective fading into
account. It also incorporates vertical diffraction over roof-
tops, horizontal diffraction/reflection based on ray-launching
and ray-tracing calculation on raster data as well as on vector
building data. Moreover, it has the support of automatic
calibration using continuous wave to further calibrate the
model. All these features of aster propagation model enabled
the modeling of a realistic network scenario. 5G mm-wave
range bands have supported channel bandwidths of 50 MHz,
100 MHz, 200 MHz and 400 MHz [64]. In our simulations,
we use 100 MHz bandwidth. We do not consider the impact of
varying channel bandwidths as bandwidth will not significantly
impact the kind of outages considered in this study that is
focused on ultra-dense heterogeneous environment. This is
because the effect of channel bandwidth will be significant in
a high load scenario only and by having a multi-carrier ultra-
dense heterogeneous environment, we ensure that high load
scenario will not be encountered. However, the EFD based
outage detection algorithm can similarly be applied in different
channel bandwidth settings as well. We use cell transmit power
as the input signal for information field generation; however,
any other coverage actuation parameter such as transmitter
antenna tilts or transmitter antenna gains can be used just as
easily if the relationship between the parameter and output data
is known. To simulate outages we de-activate the transmitters
of Small Site 1 and (mmWave) Site 1 shown in Fig. 2. In this
work, we are not concerned with the cause of outage or root
cause analysis, rather, we focus on detection of outage when
it occurs, regardless of its reason of occurrence. Rest of the
details of simulation parameters are given in Table I.

Simulation data for each scenario and shadowing level were
collected at 12 separate time stamps. The first 6 timestamps
correspond to a ‘no outage’ scenario where the only difference
in received power would be due to shadowing. The final 6
timestamps correspond to an outage in either a small cell or a
mmWave cell where the impact of both shadowing and outage
is evident. To compare the results of the three algorithms
in the manuscript, each ‘no outage’ time stamp at time t
was compared with an outage time stamp at time t + 6.
The resulting 6 comparisons were averaged to present the

TABLE I: Parameter Settings for Simulation

System Parameters Value
Number of Sites mmWave: 7; Small: 4
Transmission Frequency mmWave: 28GHz; Small: 2 GHz
Transmission Bandwidth mmWave: 100 MHz; Small: 20 MHz
Transmit Power mmWave: 30 dBm, Small: 20 dBm
Antenna Tilt mmWave: 7◦; Small: 0◦

Antenna Gain mmWave: 18 dBi; Small: 5.7 dBi
Site Placement Random
Shadowing Street: 0 dB - 10 dB

Open Space: 0 dB - 10 dB
Grassland: 2 dB - 12 dB
Low Vegetation: 4 dB - 14 dB
Building ≥ 30m: 8 dB - 18 dB
Building 12m - 30m: 10 dB - 20 dB
Building ¡ 12m: 12 dB - 22 dB

performance charts in the manuscript. In this way, not only
the outage can be detected in spatial dimension, but also the
time of occurrence of outage and the duration of the outage
can be determined by running the algorithm in real-time over
a period of time. More discussion on practical implementation
of this solution is presented in Section IV-B-4. The idea is to
understand how the algorithm performs at different levels of
shadowing to identify outages by comparing pre-outage and
post-outage received power levels.

B. Results

The results presented below compare proposed EFD-based
outage detection solution with ICA and k-means clustering
based outage detection algorithms. Simulations were carried
out for a range of shadowing levels to assess the efficacy of
EFD in mitigating the effects of noise in the data. Furthermore,
we present results for 2 different scenarios: 1) no outage,
and 2) outage to investigate the ability of EFD to distinguish
between coverage holes and outages. Note that though the
algorithms for EFD, ICA and k-means clustering use data from
all three spatio-temporal dimensions, the presented results for
baseline coverage data are averaged over time. To compare the
results of EFD, k-means and ICA, we present two snapshots,
one for 0 dB open area shadowing and one for 10 dB open
area shadowing. We also compare the true positive detection
rate and false positive detection rate for each algorithm with
open area shadowing ranging from 0 dB to 10 dB which
means that we are benchmarking the performance of each
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Fig. 4: Coverage hole detection using EFD, k-means clustering
and ICA with 0 dB open space shadowing

Fig. 5: Coverage hole detection using EFD, k-means clustering
and ICA with 10 dB open space shadowing

algorithm in a range of scenarios in a dense urban setting.
It is important to highlight here that as we change the open
area shadowing, shadowing for other clutter classes such as
different building heights is also changed by the same amount.
We ran Monte Carlo simulations for the detection algorithms
for 100 iterations and the results shown for true positive rate
and false positive rate are average over all the simulations.

1) Impact of Shadowing on Coverage Hole Detection: For
this study, we have defined coverage holes as points where
Pr < −105 dBm. Since all three algorithms are unsupervised,
this threshold can be set to any value without the loss of
generality.

Figs. 4 and 5 show coverage holes in the network and the
results for the three coverage hole detection algorithms when
open area shadowing is set to 0 dB and 10 dB respectively.
Subfigs. (a) show network coverage in terms of reference
signal received power (RSRP), Subfigs. (b) show the results
for EFD algorithm, Subfigs. (c) show the results of k-means
clustering, while Subfigs. (d) show the results for ICA algo-
rithm.

While we can visually observe the efficacy of each algo-
rithm from Figs. 4 and 5, a comprehensive evaluation of the
three algorithms requires more analytical comparison. To this
end, Fig. 6 presents the True Positive detection Rate (TPR) of
the three algorithms when open area shadowing in the network

Fig. 6: True positive rate of coverage hole detection over
varying shadowing with EFD, k-means clustering and ICA

Fig. 7: Flase positive rate of coverage hole detection over
varying shadowing with EFD, k-means clustering and ICA

is varied between 0 dB and 10 dB. We can see that k-means
clustering performs the best of all three algorithms in terms
of TPR for low shadowing levels. However, as the level of
shadowing increases, EFD begins to become more dominant as
the difference between indoor and outdoor coverage becomes
starker. On the other hand, TPR for k-means clustering begins
to fall as shadowing increases because the predicted cluster
mean values start getting closer to each other resulting in some
coverage holes being miss classified.

For a complete perspective, we also compare the False
Positive detection Rate (FPR) of the three algorithms which is
given in Fig. 7. We can see that EFD starts off with a relatively
high FPR which continues to increase with shadowing. This is
because EFD identifies the information boundary in the field
which means areas near the edge of a coverage hole will also
have non-zero entropy leading to false positives. As a result, as
the number of coverage holes increases, so does the FPR for
EFD. Conversely, the FPR for k-means decreases as shadowing
increases. For k-means this is again because of reduced mean
separation which leads to fewer false predictions. For ICA,
the FPR increases because of its unsupervised nature which
means it clusters some areas with Pr > −105 dBm with
coverage holes. Since the overall Pr values fall dramatically
with increase in shadowing standard deviation, the potential
for misclassification obviously increases.

2) Impact of shadowing on Outage Detection: To compare
the performance of the three algorithms in detecting outages
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Fig. 8: Small cell outage detection using EFD, k-means
clustering and ICA with 0 dB open space shadowing

Fig. 9: Small cell outage detection using EFD, k-means
clustering and ICA with 10 dB open space shadowing

in the network regardless of network coverage or shadowing,
we employ two different scenarios: 1) small cell outage and
2) mmWave cell outage. For this study, we have defined
outage as points where user association uc changes after a
cell becomes inactive. Again, since all three algorithms are
unsupervised, this outage criteria can be applied without the
loss of generality.

a) Small Cell Outage Detection: Figs. 8 and 9 show the
small cell outage and the results for the three algorithms when
open area shadowing is set to 0 dB and 10 dB respectively.
Subfigs. (a) show network coverage in terms of reference
signal received power (RSRP), Subfigs. (b) show the results
for EFD algorithm, Subfigs. (c) show the results of k-means
clustering, while Subfigs. (d) show the results for ICA algo-
rithm.

Fig. 8 and 9 present visual comparison of the impact of
shadowing on the performance of the three algorithms. From
Fig. 8., at 0 dB shadowing standard deviation, we observe
that while EFD can detect outage, ICA is also performing
well clearly bringing forth the area in outage. However, as
shadowing level increases to 10dB standard deviation in Fig.
9, we can observe that EFD algorithm’s performance improves
significantly, while yielding better localization of outage com-
pared to ICA. For a quantitative analysis of the performance of
EFD, ICA and k-means algorithms in the presence of different

Fig. 10: True positive rate of small cell outage detection over
varying shadowing with EFD, k-means clustering and ICA

Fig. 11: False positive rate of small cell outage detection over
varying shadowing with EFD, k-means clustering and ICA

shadowing levels, we compare the FPR and TPR of the three
algorithms with varying levels of shadowing in Fig. 10 and
Fig. 11.

From Fig. 10 we can see that ICA performs the best of
all three algorithms in terms of TPR for lower levels of
shadowing. However, as the level of shadowing increases, k-
means begins to become the more dominant algorithm. On
the other hand EFD begins with rather low value of TPR but
improves as the level of shadowing increases. The increase
in TPR for k-means clustering is due to the fact that k-
means does not the have the capacity to separate outages
from coverage holes resulting in all of the outage points and
coverage holes being lumped together as shadowing increases.
On the other hand, the increase in TPR for EFD stems from the
fact that at low shadowing, the number of points associated
with the outage effected small cell are very high but EFD
only detects the source of the outage. However, with the
increase in shadowing, the number of points associated with
the outage affected cell grows smaller which means EFD is
able to identify them with higher accuracy.

Conversely, a comparison of FPR from Fig. 11 shows
that as the shadowing increases, the ability of k-means to
distinguish outages from coverage holes clearly decreases.
Same is true for ICA but to a lesser degree since ICA is
better at separating source of variation in data than k-means.
Compared to both ICA and k-means, EFD has zero FPR for
all levels of shadowing due to its ability to extract the source
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Fig. 12: mmWave cell outage detection using EFD, k-means
clustering and ICA with 0 dB open space shadowing

Fig. 13: mmWave cell outage detection using EFD, k-means
clustering and ICA with 10 dB open space shadowing

of an anomaly very cleanly from the data regardless of the
noise variations.

It is pertinent to note here that the trend for EFD TPR
is increasing with increase in shadowing and when taken in
context with its FPR, it clearly shows that EFD is the better
algorithm for outage detection in high noise environments.
Furthermore, since EFD takes both spatial and temporal data
as input, not only does it identify the point where received
power changes in space, it also detects where the received
power changes in time. Therefore, in the event of an outage,
it can precisely pinpoint the spot where the outage occurred.

b) mmWave Cell Outage Detection: Figs. 12 and 13
show the mmWave cell outage and the results for the three
algorithms when open area shadowing is set to 0 dB and 10
dB respectively. Subfigs. (a) show network coverage in terms
of reference signal received power (RSRP), Subfigs. (b) show
the results for EFD algorithm, Subfigs. (c) show the results
of k-means clustering, while Subfigs. (d) show the results for
ICA algorithm.

From Fig. 14 we can see that ICA performs the best of
all three algorithms in terms of TPR at low to mid levels
of shadowing and its TPR remains stable with increasing
shadowing. However, this increase needs to be seen in the
context of its FPR given in Fig. 15 which also increases as
the level of shadowing increases. This is again because at

Fig. 14: True positive rate of mmWave cell outage detection
over varying shadowing with EFD, k-means clustering and
ICA

Fig. 15: Flase positive rate of mmWave cell outage detection
over varying shadowing with EFD, k-means clustering and
ICA

higher levels of shadowing, it becomes more difficult for the
algorithm to separate the source of an outage from the source
of a deep coverage hole.

In comparison, EFD again starts from a lower TPR and
gradually improves becoming the best algorithm at 10dB open
space shadowing. The reason for this is the same as before i.e.,
it is able to extract the source of the outage very well from the
data and as shadowing increases the impact of outage becomes
smaller compared to coverage holes.

For k-means clustering, the TPR in the case of a mmWave
cell outage improves only gradually since there were not a
lot of points associated with the cell to begin with. However,
as mentioned previously, it still lumps coverage holes and
outages together which means its FPR increase dramatically
with increase in shadowing.

3) Key Insights from the Results: While the relative perfor-
mance of EFD, ICA and k-means is obvious from the results
presented above, some of the more implicit, yet key insights
are given below:
• k-means clustering is effective for coverage hole detection

at lower shadowing levels while EFD is more effective at
identifying coverage holes at higher levels of shadowing.

• Both EFD and ICA algorithms are more effective at
spatially extracting the source of an outage than they are
at identifying the impact of the outage making them better
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suited for identification of a cell in outage than k-means.
In contrast, k-means is more suitable for identifying the
impact of an outage.

• EFD is a highly effective choice for locating outages in
spatio-temporal data since it can not only identify the
source of an outage but also the time at which said outage
occurred. This is of great value in real networks where
outages can be very costly if allowed to continue for
extended periods.

4) Practical Implementation of EFD-based Coverage Hole
and Outage Detection Solution: The results presented in this
section have served to highlight the power of EFD based
solution at overcoming the challenges posed by shadowing
and temporal variations towards coverage hole and outage
detection solutions. These advantages of EFD make it a very
attractive deployment proposition in future mmWave UDHNs.

For implementation in a practical setup, EFD offers several
design options and flexibilities including tweaking the value of
K to obtain more complex coverage hole and outage profiles.
The algorithm is also agnostic to the distribution of noise in
the data which also makes it an ideal choice in unpredictable
propagation environments such as UDHNs in dense urban
areas. Furthermore, the algorithm sensitivity to changes in
information flow can also be controlled by the parameter α in
(18). A higher value of α makes the algorithm more sensitive
to information changes while a smaller value makes it more
focused.

V. CONCLUSION

In this work, we have identified several key issues that
state-of-the-art coverage hole and outage detection algorithms
face i.e., they 1) only consider instantaneous network coverage
profile, 2) are sensitive to shadowing, and 3) make assumption
regarding data and noise distributions. To overcome these limi-
tations, we have proposed a novel entropy field decomposition
based solution which detects outages and coverage holes in
spatio-temporal coverage data. We present results compar-
ing the efficacy of entropy field decomposition with state-
of-the-art outage detection methods including independent
component analysis and k-means clustering in a dense urban
mmWave-small cell UDHN over a range of shadowing values.
Results show that entropy filed decomposition is a powerful
tool in combating the effects of shadowing on coverage hole
and outage detection while also demonstrating its efficiency
at extracting spatio-temporal information flows from coverage
data.
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