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Abstract—In modern wireless communication systems, radio propagation modeling to estimate pathloss has always been a fundamen-
tal task in system design and optimization. The state-of-the-art empirical propagation models are based on measurements in specific
environments and limited in their ability to capture idiosyncrasies of various propagation environments. To cope with this problem,
ray-tracing based solutions are used in commercial planning tools, but they tend to be extremely time-consuming and expensive.
We propose a Machine Learning (ML)-based model that leverages novel key predictors for estimating pathloss. By quantitatively
evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show
that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others, even with sparse training data, by providing a
65% increase in prediction accuracy as compared to empirical models and 13x decrease in prediction time as compared to ray-tracing.
To address the interpretability challenge that thwarts the adoption of most ML-based models, we perform extensive secondary analysis
using SHapley Additive exPlanations (SHAP) method, yielding many practically useful insights that can be leveraged for intelligently
tuning the network configuration, selective enrichment of training data in real networks and for building lighter ML-based propagation
model to enable low-latency use-cases.

Index Terms—Radio Propagation Model, Mobile Networks, Pathloss, Ray Tracing, Feature Engineering, Interpretable Machine Learn-
ing, Explainable Artificial Intelligence (XAI), LightGBM, Ultra-Reliable Low-Latency Communication (URLLC).
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1 INTRODUCTION

EMERGING cellular networks are anticipated to witness
a dramatic growth in connected devices and exciting

new vertical services. Artificial Intelligence (AI) enabled
end to end network automation vis-a-vis next generation
Self Organizing Network (AISON), as proposed in [2], is
considered to be the key enabler to meet the stringent per-
formance requirements of increasingly complex planning,
operation, optimization and maintenance in emerging self-
driving networks.

The ultimate goal of AISON is to autonomously or-
chestrate the plethora of network parameters to maintain
optimal multi-faceted network performance in terms of
all important top level Key Performance Indicators (KPIs),
without much human involvement [2]. Most of the high
level KPIs such as capacity, Quality of Service (QoS) and
energy efficiency ultimately depend on one core low level
metric i.e., Received Signal Strength (RSS). Therefore, char-
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acterising RSS as a function of network parameters is the
very first step towards optimally designing and operating a
cellular network. Hence, a realistic propagation model that
is sensitive to the variations in network parameters (e.g.,
tilt) and environment geography and can follow the spatio-
temporal variation in the network will be the cornerstone of
AISON enabled future cellular networks (5G and beyond).

The existing propagation models can be categorized into
three classes: deterministic, empirical and semi-empirical
[3], [4]; deterministic models are based on the principles
of wave propagation that can be theoretically computed
using Maxwell’s equations. However, in practice approxi-
mate methods such as ray tracing are used to model signal
propagation, by taking into account the interactions of rays
with the environment and using the dominant ray path
to calculate the pathloss. These models can be very accu-
rate depending on the resolution of available topographical
database, but unfortunately are computationally inefficient.
On the other hand, empirical and semi-empirical models such
as COST-Hata [5], Stanford University Interim (SUI) [6],
Standard Propagation Model (SPM) [7] and ITU-R P.452-15
[8] can be efficiently computed. However, these empirical
and semi-empirical models are less sensitive to the actual
physical and geometric structure of a given propagation en-
vironment and require in-depth domain-specific knowledge
and technical expertise in radio signal propagation across
electromagnetic fields.

To address the constraints and limitations of traditional
propagation modeling methods, Artificial Intelligence and
Machine Learning (ML) techniques are being considered
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as promising viable solutions and have been proven to be
very effective for approximating arbitrary functions with
hidden features. As envisioned in [2], AI is going to be indis-
pensable in optimally designing and operating increasingly
complex cellular networks. Hence, AI can replace classical
mathematical models with a robust data-driven pathloss
prediction model, that is more accurate than empirical prop-
agation models and more computationally efficient than
deterministic models, for system level intelligent network
planning and post-deployment optimization and automa-
tion in cellular networks.

1.1 Related Work
In recent years several studies have been conducted for
pathloss prediction in a particular environment using ma-
chine learning based models. Artificial Neural Networks
(ANNs) have been at the core of most ML-based pathloss
prediction models, however, the input features to the ANN
model in these studies are limited to a particular environ-
ment, such as rural [9], urban [10], [11] and volcanic ocean
islands [12], and seems unable to scale to other environment
settings. The authors in [13] went one step ahead and
used evolutionary algorithms to find the optimal hyper-
parameters of the ANN based model, but they assumed
a uniformly structured simulation area, which is not the
case in practical scenarios. The authors in [14] incorporated
features based on clutter maps to differentiate between dif-
ferent environments, but the presented model is still unable
to capture the variation in coverage due to the change in
geometrical structure of the propagation path. Furthermore,
the authors in [15] tried to capture this variation by in-
corporating clutter heights as input feature, but still their
input feature set is very limited to scale to different network
configuration, as is the case in real networks. On the other
hand, supervised ML techniques have also been used for
pathloss prediction. The authors in [16] used Support Vector
Regression to predict pathloss. However, they trained their
model on a drive test data from a single serving Base
Station (BS) in an urban environment. The authors in [17]
compared the performance of several supervised ML algo-
rithms for estimating cellular network coverage, using User
Equipment (UE) measurement traces, BS parameters and
geographical information. However, instead of modeling
the pathloss or RSS, the authors classify the observation
area as a good or a bad coverage area, using a pre-defined
coverage threshold. A recently proposed data-driven model
in [18] is the most relevant to our framework, using a
boosting ensemble learning method to predict RSS using
UE data from crowdsourcing applications. However, the
environmental features used in the model are very limited.

1.2 Contributions and Organization
In this paper, we present a framework for an AI-driven
large-scale 3D pathloss model (See Figure 1), that is scalable
and robust to the variations in the environment geography
and addresses the limitations of aforementioned studies.
The contributions of this paper can be summarized as
follows:

1) A novel set of key predictors (features) are identi-
fied that can characterize the physical and geometric

structure of the environment traversed by a signal in
its propagation path (e.g., indoor distance, Manhattan
distance, number of building penetrations in each clutter
type).

2) Multi-faceted performance comparison of the cur-
rent state-of-the-art ML algorithms is done to eval-
uate the ability of proposed ML-based propaga-
tion model for real-time implementation, that in-
cludes predictive performance, generalization perfor-
mance (robustness to unseen propagation scenarios
using sparse training data, as is the case in real
networks) and computational performance (i.e., train-
ing time and prediction time). In our investiga-
tion, Light Gradient Boosting Machine (LightGBM) al-
gorithm is found to be the most optimal choice overall
in modeling the complex propagation environment in
real networks, due to its lightning fast training process
and robustness to sparsity of training data.

3) The baseline performance of LightGBM algorithm is
further optimized by investigating four different hy-
perparameter optimization approaches. These include
Grid Search, Random Search, Bayesian Optimization
and Simulated Annealing. These approaches are inves-
tigated in terms of performance gain and computational
complexity (convergence time), and Bayesian optimiza-
tion seems to be the best approach among them, as it
converges in just 3 search iterations and reduces the
prediction RMSE by 10%.

4) Performance comparison of the proposed model with
state-of-the-art empirical propagation models and ray-
tracing approach is also provided. The results show
a 65% increase in prediction accuracy as compared
to empirical propagation models and 13x decrease in
prediction time as compared to ray tracing.

5) A key caveat of using ML is the lack of interpretability
of resultant models, i.e., the black box paradox. In this
study we try to address this weakness of the pro-
posed RSS estimation models by performing extensive
secondary analysis of the proposed models through
SHAP method to interpret the model’s predictions and
bring clarity in understanding the importance of each
feature (e.g., Azimuth, Tilt and Antenna Height) in the
model. Utility of the insights drawn from the secondary
SHAP analysis are also provided, such as intelligent
optimization of network configuration, smart/selective
enrichment of training data in real networks and build-
ing lighter ML-based propagation model to enable low-
latency use-cases.

6) Another key contribution of the paper is to leverage
the SHAP interpretability analysis to improve the var-
ious aspects of performance in the baseline model. We
leverage the insights from SHAP analysis to propose
a second novel light weight model for real-time im-
plementation. This second model uses only the most
significant features (selected based on insights gained
from SHAP analysis) and as a result has ∼ 70% less
computational complexity compared to the base line
model at the cost of negligible loss in performance
(around 3%).
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Fig. 1. Proposed Framework of a Machine Learning-based 3D Radio Propagation Model. Raw datasets such as BS sites topology, UE mea-
surement traces and geographical information are first pre-processed and then converted into right data i-e- feature matrix comprising of key
features/predictors that can estimate pathloss (or RSS). These key features are then used to train state-of-the-art ML algorithms for creating an
RSS prediction model.

The rest of the paper is organized as follows: Section 2
explains the proposed framework, starting from raw data
from the network, data pre-processing, feature engineering
and a comparison of various machine learning algorithms
for modeling RSS, whereas, Section 3 provides the perfor-
mance comparison of the proposed model with traditional
propagation models. Interpretation of the proposed AI-
driven model using a recently proposed sensitivity analysis
technique is given in Section 4 and finally Section 5 con-
cludes this paper.

2 PROPOSED FRAMEWORK

The proposed framework for an AI-driven 3D propagation
model (Figure 1) uses raw data from the network consisting
of network topology information, UE measurement traces
and geographic information of the area, pre-process them
and converts them into right data [2], which is then fed to
a ML model to estimate RSS at given locations in a radio
propagation environment.

2.1 Network and Simulation Setup

• Network Scenario: A ray-tracing based industry stan-
dard radio network planning and optimization plat-
form “Atoll” [19] is used to create a sophisticated
network topology, consisting of 10 macro cell sites in
the center of City of Brussels, Belgium (See Figure 2(b)).
Actual antenna pattern and antenna heights are used in
our analysis. Table 1 lists all the network and simula-
tion scenario settings used in our analysis.

• Geographical Datasets: High resolution (1-m) geo-
graphical datasets containing earth terrain, buildings
heights and land use information (e.g., Open, Parks,
Block Buildings etc.) of the city are used in our analy-
sis, enabling realistic and accurate pathloss calculation
using Aster high-performance propagation model [20].

TABLE 1
Network Scenario Settings

System Parameters Values

Air Technology 4G LTE
Cellular Layout 10 Macrocell sites

Sectors 3 sectors per eNB
Simulation Location Brussels, Belgium

Simulation Area 3.80 km2

User Distribution Poisson Distribution
Propagation Model Aster (Ray Tracing)

Path Loss Matrix Resolution 10m
Geographic Information (1-m Resolution GeoData)

Ground Heights (DTM) +
Building Heights (DHM) +
Land Use Map (DLU)

Land Cover (Clutter) Types 15 different classes
eNB Transmit Power (max) 43 dBm

eNB Noise Figure 5 dB
eNB Antenna Height Actual site heights
eNB Antenna Model Kathrein Directional Antenna

(Model 742 265)
eNB Antenna Gain 18.3 dBi

eNB Antenna Horizontal
Half Power Beamwidth

63o

eNB Antenna Vertical
Half Power Beamwidth

4.7o

Frequency Band 2110 FDD (E-UTRA Band 1)
Channel Bandwidth (CBW) 5 MHz

• Ray Tracing: Aster utilizes advanced ray-tracing prop-
agation techniques to calculate various phenomena
that affects radio wave propagation including vertical
diffractions over roof-tops, horizontal diffractions and
reflections based on ray-launching, atmospheric ab-
sorptions, rain attenuation and vegetation through loss
etc. Aster utilizes advanced ray-tracing propagation
techniques to calculate various phenomena that affects
radio wave propagation including vertical diffractions
over roof-tops, horizontal diffractions and reflections
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(a) 3D Elevation Map (b) 2D Elevation Map (c) Propagation Path between a BS and UE

Fig. 2. Area of Simulation showing (a) Building Heights (b) Transmitter Positions and (c) Vertical Propagation Path

based on ray-launching, atmospheric absorptions, rain
attenuation and vegetation through loss etc.

• Validation using Real Data: Furthermore, the parame-
ters of the Aster propagation model are pre-calibrated
using more than 1.5 million real channel measurement
points from the real environment [21]. Therefore, the
high-fidelity RSS (or pathloss) data calculated by Atoll
in the observation area can be taken as ground truth for
designing a realistic propagation model.

2.2 Raw Data
The following three different kinds of datasets are required
as input data for our proposed framework:

1) Sites Topology: This dataset contains the Location,
Height, Azimuth, Tilt, Transmit Power, Frequency, An-
tenna Type of all the BSs in the observation area. It is
denoted by DBS (See Table 2).

TABLE 2
Sites Topology

Parameter Description

Location
(xBS, yBS)

Location coordinates of a BS site (See Figure 2(b))

Height
(hBS)

The height of BS antenna above the ground
and building (if any)

Azimuth
(θBS)

Azimuth angle (in degrees) of the BS antenna,
which is the direction of antenna w.r.t. North

Tilt
(φBS)

Tilt angle (in degrees) of the BS antenna, which
is basically the angle below the horizontal plane

Tx Power
(PBS)

The power of the radio signal (in dBm) when
it’s transmitted from the BS antenna

Frequency
(f )

Carrier frequency used by the BS antenna for
transmission

Antenna
Type

The type of antenna used by the BS transmitter.
It is differentiated by beamwidth, antenna gain etc

2) Geographic Information: The geographical information
of the propagation environment can be captured using
three types of geographical datasets: Digital Terrain
Model (DTM), Digital Height Model (DHM) and Digital
Land Use Map (DLU). These datasets are in a raster grid
format, which means that the whole observation area

is divided into grids (or bins), each grid containing a
specific value (See Table 3). These geographical datasets
are routinely used by mobile telecom industry for their
planning and maintenance tasks, and can be acquired
on demand [22].

TABLE 3
Geographic Information

Parameter Description

Digital Terrain
Model (DDTM)

It provides the earth terrain (ground) height.
It takes as an input the x, y coordinates and
outputs the ground height zDTM at that place
zDTM = DDTM(x, y). (See Figure 2(c))

Digital Height
Model (DDHM)

It provides the building heights (above the
ground) in the observation area. It takes
as an input the x, y coordinates and output
the total height zDHM of the user at that place
zDHM = DDHM(x, y). (See Figure 2(a))

Digital Land
Use Map (DDLU)

It provides the clutter (or land cover)
type of each grid in the observation area.
It takes as an input the x, y coordinates
and output the clutter type c at that place
c = DDLU(x, y)

3) UE Traces: This dataset contains the RSS, Location,
Timestamp, Network ID of all the UEs in the ob-
servation area. It is denoted by DUE (See Table 4).
The mobile operators can readily use the data from
Drive Tests, Minimization of Drive Tests (MDT) reports,
crowdsourcing applications etc. to generate this dataset,
without the need for any new standardization.

TABLE 4
UE Traces

Parameter Description

RSS Received Signal Strength (PUE) from the serving
Base Station (BS)

Location Location coordinates (xUE, yUE) of a UE
Timestamp Time at which the UE trace is recorded
Network ID Information regarding serving BS ID,

Mobile Network Code etc.
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2.3 Data Pre-processing

Raw UE traces from the network are first pre-processed
by cleaning and gridding, before using them for feature
extraction.

2.3.1 Data cleaning
Data cleaning is the process of identifying missing and
corrupt values in the dataset and then handling them by
modifying or deleting the relevant rows (or entries) from the
dataset. This pre-processing step ensures that the training
data for the proposed model is free from any anomalies
and inconsistencies. In our study, some UE traces containing
missing values (e.g., out of coverage UEs) are removed
before using them for further analysis.

2.3.2 Data gridding
Data gridding is the process of mapping all UE traces into
unique spatial bins (of 10m width in our case) and then
averaging the measurements inside each spatial bin for
every serving BS. The advantage of data gridding is twofold:

1) Handling Randomness: Firstly, it can offset randomness
in RSS due to fast fading and slow fading (to some
extent), by averaging all measurements from the same
BS, falling within a small bin, given the RSS within the
bin is expected to stay almost same due to its small size.

2) Handling Positioning Error: Secondly, it handles posi-
tioning error in the user reported measurements. How-
ever, gridding/binning has its costs i.e., it introduces
quantization error to say the least and also presents an
accuracy vs complexity trade-off.

In our study, UE traces in the observation area are first
mapped into unique spatial bins of 10m width, and then
in each bin all UE traces corresponding to a unique BS
were averaged out. For further analysis, the averaged UE
traces are used to mitigate the effect of randomness from
the original data.

For detailed analysis of the impact of gridding, reader
is referred to a recent study in [23] and [24]. Analysis
presented in [23] and [24] shows that there exists a trade-
off between the quantization error introduced by gridding
and the positioning error from the incorrect GPS location
tagged with the UE measurements, and that there exists
an optimal bin-width for gridding for a given UE density
and positioning error that maximizes the accuracy of UE
measurements data.

2.4 Feature Engineering (Raw Data to Right Data)

Feature engineering is a key process in ML, that leverages
domain knowledge to create features which can characterize
the complex target model and greatly enhance its learning
performance.

In our study, several key predictors (features) are identi-
fied or engineered, to better characterize the environment
traversed by a signal in its propagation path (See Figure 3).
The raw network, UE and geographic datasets, readily avail-
able to the mobile operators, are converted into right data
(key features) comprising of system as well as propagation
environment features that can then be leveraged to train an
ML-based propagation model.

2.4.1 Propagation Distance
This is the horizontal distance (in meters) between a UE and
its serving BS. It is denoted by d.

d =
√

(xBS − xUE)2 + (yBS − yUE)2. (1)

2.4.2 Horizontal Angular Separation
This is the horizontal angular separation (in degrees) be-
tween the BS antenna boresight and the direction of Line of
Sight path to the UE. This feature captures the attenuation
due to horizontal antenna pattern of the BS. It is denoted by
θhor.

θhor = abs(θBS − θUE), (2)

where,

θUE = atan2

(
xBS − xUE

yBS − yUE

)
. (3)

Here θUE is the azimuth angle of (UE) arrival and θBS is
the azimuth angle of (BS) departure, or simply BS azimuth
angle, whereas, atan2() calculates the four quadrant inverse
tangent.

2.4.3 Vertical Angular Separation
This is the vertical angular separation (in degrees) between
the BS antenna boresight and the direction of Line of Sight
path to the UE. This feature captures the attenuation due to
vertical antenna pattern of the BS. It is denoted by φver.

φver = φUE − φBS, (4)

where,

φUE = atan

(
zUE − zBS

d

)
, (5)

zUE = DDTM(xUE, yUE) +DDHM(xUE, yUE), (6)

zBS = DDTM(xBS, yBS) +DDHM(xBS, yBS). (7)

Here φUE is the tilt angle of (UE) arrival, φBS is the tilt
angle of (BS) departure, or simply BS tilt angle, zUE is the
total height of UE and zBS is the total height of BS (See
Table 3 for details on DDTM and DDHM).

2.4.4 Effective BS Height
This is the vertical distance (in meters) between a UE and
its serving BS. It is denoted by dvert.

dvert = zBS − zUE. (8)

2.4.5 Manhattan Distance
This represents the Manhattan distance between the BS and
UE. As radio waves also diffracts at the street corners and
are more likely to travel along the streets in urban areas,
therefore Manhattan distance is a better metric to calculate
the distance traversed by the signal, especially in urban
networks [25], [26]. It is denoted by dman.

2.4.6 LoS / NLoS State
This represents the link status between a BS and a UE
antenna. A UE can either be in a Line of Sight (LoS) or
Non Line of Sight (NLoS) region from the BS. This feature is
particularly useful in wireless channels, as LoS regions have
higher RSS, and vice versa. It is denoted by L.
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Fig. 3. Propagation Path between a BS and UE, showing various features of the proposed model

2.4.7 First Diffraction Point
This is the horizontal distance (in meters) from a BS to the
first diffraction point in the propagation path between a BS
and UE. This feature captures the significance of diffracted
rays at the receiver, as multiple rays from the same BS are
received and the ray having the highest signal strength is
selected as the dominant ray. It is denoted by dFD.

2.4.8 Last Diffraction Point
This is the horizontal distance (in meters) from a BS to
the last diffraction point in the propagation path between
a BS and UE. This feature also tries to learn the behavior of
diffracted rays in the estimation of RSS. It is denoted by dLD.

2.4.9 Number of Building Penetrations
This is the number of buildings penetrated by the signal in
its direct path between a BS and UE. This feature charac-
terizes the penetration loss (dB) experienced by the signal
while crossing buildings. It is denoted by N .

2.4.10 Indoor Distance
Horizontal distance (in meters) in the direct path between a
BS and UE that is passing through buildings (indoor). This
feature characterizes the linear loss (dBm/m) experienced
by the signal in an indoor area. It is denoted by dindoor.

2.4.11 Outdoor Distance
Horizontal distance (in meters) in the direct path between
a BS and UE that is in open area (outdoor). This feature
characterizes the linear loss (dBm/m) experienced by the
signal in an open area. It is denoted by doutdoor.

2.4.12 BS Clutter Type
It is the clutter type (or land cover type) of the BS (For ex-
ample: open street, dense buildings, sparse buildings, trees,
water etc.). This feature tries to learn the effect of different
land cover type on the signal around the BS antenna. It is
denoted by cBS.

2.4.13 UE Clutter Type
It is the clutter type (or land cover type) of the UE (For
example: open street, dense buildings, sparse buildings,
trees, water etc.). Each clutter type has its own effect on
the signal and this feature tries to learn this behavior. It is
denoted by cUE.

2.4.14 Number of Building Penetrations in each Clutter
Type
This is the number of buildings penetrated by the signal
in each unique clutter in the direct path between a BS and
UE. Different clutters can be different types of buildings,
each having different penetration loss (dB). If our obser-
vation area consists of 15 different clutter classes, then
this feature is subdivided into 15 different features, each
representing the number of building penetrations in that
respective clutter, whose sum equals the total number of
building penetrations in the propagation path of that UE. It
is denoted by Nc.

2.4.15 Indoor Distance in each Clutter Type
Indoor distance (in meters) covered by each unique clutter
in the direct path between a BS and UE. This feature
characterizes the linear loss (dBm/m) experienced by the
signal in different indoor environments. Again, this feature
is subdivided into the total number of clutters in the obser-
vation area, whose sum equals the total indoor distance in
the propagation path of that UE. It is denoted by dindoorc .

2.4.16 Outdoor Distance in each Clutter Type
Outdoor distance (in meters) covered by each unique clutter
in the direct path between a BS and UE. This feature charac-
terizes the linear loss (dBm/m) experienced by the signal in
different outdoor environments. Again, this feature is sub-
divided into the total number of clutters in the observation
area, whose sum equals the total outdoor distance in the
propagation path of that UE. It is denoted by doutdoorc .
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TABLE 5
Key Symbol Definitions

Symbol Units Definition Symbol Units Definition

θBS
o Azimuth Angle of (BS) Departure PBS dBm BS Transmit Power

φBS
o Tilt Angle of (BS) Departure PUE dBm RSS of a UE

θUE
o Azimuth Angle of (UE) Arrival d m Propagation Distance

φUE
o Tilt Angle of (UE) Arrival dvert m Effective BS Height

φver
o Vertical Angular Separation dman m Manhattan Distance

θhor
o Horizontal Angular Separation L - LoS/NLoS State

f MHz Operating Frequency dFD m Distance from BS to First Diffraction Point

hBS m BS Antenna Height dLD m Distance from BS to Last Diffraction Point

hUE m UE Antenna Height N - Number of Building Penetrations

cBS int BS Clutter Type dindoor m Indoor Distance in the Propagation Path

cUE int UE Clutter Type doutdoor m Outdoor Distance in the Propagation Path

DDHM - Raster Grid Data of Digital Height Model Nc - No. of Building Penetrations in each Unique Clutter

DDTM - Raster Grid Data of Digital Terrain Model dindoorc m Indoor Distance in each Unique Clutter

DDLU - Raster Grid Data of Digital Land Use Map dindoorc m Outdoor Distance in each Unique Clutter

2.5 RSS Modeling using Machine Learning Methods

RSS prediction is essentially a regression problem, where the
key features proposed earlier are used as input for training
ML models, to learn the complex behavior of a signal
passing through a wireless channel. Algorithm 1 explains
the process of removing randomness from the UE traces
(to some extent) by gridding (averaging all measurements
in a spatial bin) and then training the ML model using
the computed key features as input and the corresponding
expected value of RSS as output.

In this paper, we investigate a range of different Para-
metric, Non-Parametric and Ensembles of machine learning
regression algorithms for their strengths and weaknesses
while modeling RSS and implementing them.
• Parametric algorithms, such as Linear Regression, as-

sumes training data to be of a specific functional form
with a fixed size of parameters.

• Non-Parametric algorithms, on the other hand, such as
k-Nearest Neighbors, Decision Tree and Neural Net-
works, are free to assume any functional form of the
training data.

• Ensemble algorithms are of two types: Bagging and
Boosting, which further have several variants.

Earlier works on propagation modeling [17] were mostly
based on parametric models and some ensemble learning
models.

2.5.1 Criteria for Model Evaluation and Selection

In this work, we have done a comprehensive and multi-
faceted performance evaluation of the state-of-the art ML
algorithms, that includes predictive performance, generalization
performance and computational performance, and also provided
insights from each of these algorithms to make this paper
self-contained.

1) Predictive Performance: The predictive per-
formance of a model indicates the model

Algorithm 1 RSS Prediction Model Training Algorithm
Input: DUE, DBS, DDTM, DDHM, DDLU
Output: RSS Prediction Model M(F )

1: for all UE traces do
2: Map its location to pre-defined grids (e.g., 10m x

10m)
3: end for
4: for each unique grid do
5: for each unique serving BS do
6: Average out the RSS (PUE) of all users to offset

randomness
7: Compute feature vector F = [d, θhor, φver, dvert,

dman, L, dFD, dLD, N, dindoor, doutdoor, cBS, cUE, Nc,
dindoorc , doutdoorc ]

8: end for
9: end for

10: Train the Machine Learning model M using Feature
Matrix F , whose each row corresponds to a feature
vector F

11: return M(F )

accuracy for unseen data. In our analysis, we
have used Root Mean Square Error (RMSE) and
coefficient of determination (R2) performance metrics
defined below to judge the predictive performance of
models.

RMSE =

√
ΣN

i=1(PUEi
− P̂UEi

)2

N
,

R2 = 1 − SSres

SStotal
= 1 − Σi(PUEi

− P̂UEi
)2

Σi(PUEi
− P̄UEi

)2
.

Here PUE is the actual RSS of a UE, P̂UE is the predicted
RSS of a UE, P̄UE is the mean value of RSS and N is
the number of UE traces in the test data. SSres and
SStot corresponds to the residual sum of squares and total
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sum of squares, respectively. RMSE is measured here
in dB, whereas R2 = 1 in the best case and R2 = 0
when the model output is always equal to its mean
value in test data. In rare scenarios, R2 < 0, when
the model predictions are even worse than the baseline
mean value prediction.

2) Generalization Performance: The generalization perfor-
mance of a model indicates its robustness in predictive
performance for unseen data (or scenarios). In our
analysis, we have used 5-fold repeated cross-validation
technique along with its mean and standard deviation
value for all iterations to judge the generalization ability
of a model on unseen data (propagation scenarios)
with a certain confidence, even when using very sparse
training data (2% in our analysis). In other words,
the generalization ability of the model can be judged
both by the standard deviation of its mean RMSE or
the increase in its predictive performance when using
sparse training data for all cross-validation iterations.

3) Computational Performance: Computational perfor-
mance of a ML model can be judged by its training
time, which indicates the time and therefore resources
it takes to train the model and prediction time, which
shows its prediction latency. These values are extremely
crucial in a production setting where we have cost (or
resources) and latency constraints. In our analysis, all
the ML methods are evaluated using the same number
of CPU cores for a fair comparison.

2.5.2 Model Evaluation
1) Linear Regression: As evidenced by our experiments,

linear regression method [27] doesn’t seem to be suit-
able to capture the complex non-linear nature of the
wireless channel. In our results, we have shown (in
Figure 4) that it gives a high prediction RMSE of 5.45
dB and a low R2 score of 0.65.

2) k-Nearest Neighbors: k-Nearest Neighbors (k-NN) [28]
doesn’t seem to handle non-linearity well in case of
sparse training data, as the prediction in test data is
basically the mean of k nearest data points in the
training data. Also, it has the highest computation cost
at run-time among the tested algorithms, as evidenced
in results (Figure 4).

3) Decision Tree: A single Decision Tree (DT) [29] in our
experiments, is unable to generalize well, especially
with sparse training data and seems to overfit, therefore
also doesn’t seem to be a suitable choice for a ML-based
propagation model.

4) Random Forest: Random Forest [30] is an Ensemble
learning method, which combines several decision
trees, using Bootstrap Aggregation (or Bagging) technique,
to improve the predictive performance of a single de-
cision tree. Here, each tree is trained on a random
subset, with replacement, of training data. Also, each
node is split among a random subset of input features,
which may not be the best split among all features.
This randomness increases the bias of the forest, when
compared to a single non-random tree. The output
here is the average prediction of all individual trees,

and due to this averaging, variance in the ensemble
model decreases, which more than make up for the
increase in bias, hence improving performance of the
overall model, RMSE of 3.46 dB as compared to 4.76
dB in a single decision tree. Another advantage is that,
as opposed to a single decision tree, random forest
is robust to outliers in the training data. The main
drawback of using this method is the slow prediction
speed, as evidenced in our results (See Figure 4), due to
a large number of trees, making it unsuitable for real-
time predictions.

5) Extremely Randomized Trees: Extremely Randomized
Trees is another Bagging Ensemble learning method,
which goes one step further in randomizing the trees,
as compared to Random Forest. In addition to each tree
trained on a random subset of data and best split at each
node chosen on a random subset of features, thresholds
are also picked at random for every candidate feature at
a node. This increase in randomness, further decreases
the variance of the ensemble model, at the cost of
slight increase in bias. It has all the pros of Random
Forest, plus a reduction in training time, but the major
drawback is still high prediction time, as evidenced in
our results (See Figure 4).

6) Adaptive Boosting: Adaptive Boosting (AdaBoost) is a
Boosting Ensemble model. In boosting, models are built
in sequence, so that each subsequent model learns from
the mistakes of the previous model, to create a stronger
model. In AdaBoost, each subsequent model is forced
to focus on samples which were badly predicted in
the previous model. This is done by giving higher
weights to those samples in the training set, whose
prediction error was high in the previous model, and
vice versa. Weighted sampling is then used in the
subsequent model to generate a derived training set,
using sampling with replacement. The probability that
a training example appears in the training set is relative
to its weight. The final output is a weighted average
of all the model’s output, where more weight is placed
on stronger models. Consequently, the bias of the com-
bined model is reduced in boosting, as opposed to bagging,
where the variance was reduced, by averaging several
weak learners. As shown in Figure 4, bagging methods
outperforms AdaBoost in terms of higher prediction
accuracy. The other disadvantage of this technique is
that it cannot be parallelized, since the training of
each subsequent tree model, depends on the output
of previous model, therefore, its training time is much
higher as compared to bagging ensemble methods.

7) Gradient Boosting Decision Trees: Gradient Boosting
Decision Trees (GBDT) is another Boosting ensemble
model, which works on the same Boosting principle of
learning from the previous model’s mistake, but the
difference lies in how to learn from the mistakes of
previous model. Gradient Boosting learns from the error
residuals (gradients) of the previous model directly, unlike
AdaBoost, which changes the sample distribution at
every iteration, by giving higher weights to under-
fitted (or badly predicted) samples. The goal is to iter-
atively minimize the prediction error, by training each
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subsequent decision tree model, on the residual errors
(prediction errors) made by the previous model, this
process is essentially a gradient descent optimization
on the overall composite model. The final output would
then be the sum of predictions from all the models.
Our results show that Gradient Tree Boosting has much
better prediction performance (RMSE of 4.32 dB) as
compared to AdaBoost (See Figure 4).

8) Extreme Gradient Boosting: Extreme Gradient Boosting
(XGBoost) [31] is an advanced implementation of gradi-
ent boosting and follows the same principle. The main
advantage of XGBoost is the ability of parallel process-
ing, therefore much faster as compared to GBDT. While
it’s not possible to create trees in parallel because each
tree is dependent on the previous, it’s possible to build
a tree using all the cores, by building several nodes
within each depth of a tree, in parallel. To improve
the performance of the model, Weighted Quantile Stretch
idea is used to reduce the search space while finding
the best split, by looking at the distribution of features
across all instances in a leaf. It further reduces the com-
putational complexity by learning the sparsity patterns
in the data and skip samples with missing values while
making a split. Moreover, it includes regularization to
prevent over-fitting and improve overall performance
of the model (See Figure 4), due to which it is also
sometimes called as regularized gradient boosting.

9) Light Gradient Boosting: Light Gradient Boosting Ma-
chine (LightGBM) [32] is another implementation of
Gradient Boosting, which improves on XGBoost. It
can train on larger datasets in a fraction of time and
with comparable accuracy, as compared to XGBoost,
hence the word Light is used. It uses a technique called
Gradient-based One-Side Sampling (GOSS) to intelligently
extract the most useful information as fast as possible,
by randomly skipping the samples with less infor-
mation (small gradients) in the dataset. Moreover it
has introduced another method called Exclusive Feature
Bundling (EFB) for reducing model complexity, by com-
bining similar features in a near lossless way. Our re-
sults have shown that LightGBM has better accuracy as
compared to XGBoost in sparse training data scenario
and 12x faster training speed (See Figure 4).

10) Categorical Boosting: Categorical Boosting (CatBoost)
[33] is a gradient boosting algorithm whose power
lies in processing categorical features in the dataset.
Categorical features have values which are discrete
and not related to each other. CatBoost incorporates
several innovative methods to deal with these features
at training, instead of during data pre-processing. Fur-
thermore, it incorporates a modified gradient boosting
algorithm called ordered boosting, to avoid target leakage
present in standard gradient boosting algorithms, as
they rely on the target of all training samples at each
iteration, resulting in biasness. Here, however, train-
ing is done on independent random permutations of
the dataset at each iteration, to avoid this prediction
shift. Therefore, CatBoost can outperform other gradient
boosting algorithms, specially if you have categorical
variables in the data (for instance, LOS State, BS and UE

Clutter Types are the categorical features used in our
model). As shown in our results (Figure 4), prediction
RMSE is reduced to 3.74 dB at the cost of increase in
training time. It is worth mentioning here that the GPU
implementation of this algorithm is faster than both
XGBoost and LightGBM, but in our results we have
used CPU for training these algorithms.

11) Deep Neural Network: Deep Neural Network (DNN)
algorithm belongs to a special class of machine learn-
ing, called deep learning and creates a multi-layer per-
ceptron (MLP) to find the input-output associations.
Its basic structure consists of an input layer, output
layer and one or more hidden layers between them,
each containing several neurons (or nodes). Neurons in
the input layer equals the number of input features,
whereas output layer consists of one neuron which
holds the prediction output. Number of hidden lay-
ers and its neurons are variable, and depends on the
complexity of model it is trying to learn. Our extensive
investigations on DNN design show that, for learning
the behavior of RSS in a wireless channel, 6 hidden
layers each consisting of 32 neurons provide the most
optimal results, any increase or decrease in this number
results in over-fitting or under-fitting on the training
data, respectively. The DNN used in this study has
Rectified Linear Unit (ReLu) activation function in the
hidden layers, whereas output layer uses linear activa-
tion function. In our simulation results (Figure 4), DNN
performs worse than ensemble-based methods and also
has the highest computational cost.

2.5.3 Model Selection

For selecting the best performing model, we should overall
look at the predictive, generalization and computational
performance across all evaluated models. For a fair com-
parison, all the ML methods are evaluated using the same
number of CPU cores. Furthermore, in all experiments, 5-
fold repeated cross validation is used so that the results are
generalizable in all propagation scenarios.

In Figure 4(a), training and prediction time of all the
methods are normalized to the highest value individually.
DNN has the highest, whereas linear regression has the
lowest training and prediction time. In Figure 4(c), compar-
ison of R2 value is given, where CatBoost and LightGBM
algorithms perform the best in capturing the variance of RSS
(or pathloss) and learning complex non-linear relationships
in a wireless channel and have the lowest Root Mean
Squared Error (RMSE) in sparse training data scenarios
(shown in Figure 4(b)), whereas linear regression has the
highest RMSE for RSS prediction as the complex non-linear
nature of wireless channel renders it unsuitable.

All the models are also separately trained on only 2% of
training data, to evaluate their performance in case of data
sparsity, as is the case in real practical scenarios. DNN shows
the highest impact (loss in accuracy) due to data sparsity.

Overall, LightGBM algorithm outperforms others, especially
for real-time implementation, due to its lightning fast training
process. RSS model trained using LightGBM algorithm is
used for further simulations and results.
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Fig. 4. Comparison of various Machine Learning Algorithms w.r.t (a)
Training Time, Prediction Time, (b) Prediction Error, (c) R-Squared Value
and Robustness to Sparsity of Training Data, for Modeling RSS (Height
of bars represent the mean value and Error bar represent the standard
deviation using 5-fold Repeated Cross Validation)

2.5.4 Model Improvement using Hyperparameter Optimiza-
tion

The baseline LightGBM model performance shown in Fig-
ure 4 is further improved by optimizing its hyperparameters
for the RSS (or pathloss) prediction task, according to the
special characteristics of the wireless channel.

The hyperparameters selected to be optimized are: 1)
‘number of estimators’ in the range of 500 − 2500, 2) ‘maxi-
mum tree depth’ in the range of 5−20 and 3) ‘learning rate’
in the range of 0.1 − 0.001. Furthermore, 5-fold repeated
cross validation is used for each combination of hyperpa-
rameters and model’s performance is evaluated based on its
RMSE and R2. Four different hyperparameter optimization
approaches are evaluated (shown in Figure 5) in terms of
performance gain and convergence time:

1) Grid Search: This approach does an exhaustive search
over the entire search space of hyperparameters. Fig-
ure 5(a) shows the mean RMSE and R2 of LightGBM
model at different combinations of hyperparameters.
The model converges to its best RMSE after 50 iterations
(as shown in Figure 5(e)).

2) Random Search: This approach also does an exhaustive
search over the entire search space of hyperparameters,
but picks them randomly, therefore its convergence
time is more likely to be less than grid search method,
as shown in Figure 5(e), where the model converges to
its best RMSE after 25 iterations.

3) Bayesian: In this approach, hyperparameters are tuned
using a Bayesian optimization algorithm, known as
Tree-structured Parzen Estimator (TPE) [34]. This
Bayesian approach is a model-based approach, and as
search iterations progresses, it switches from explo-
ration to exploitation to minimize the objective function
loss (concentrating on the hyperparameter combina-
tions that resulted in lower loss, which in our case
is the RMSE). This approach sometimes gets trapped
in the local minima of the objective function, an issue
which is not faced by grid or random search. Figure 5(c)
and Figure 5(e) shows the superior performance of this
approach as it converges in only 3 search iterations.

4) Simulated Annealing: This approach is a meta-heuristic
optimization algorithm [35], that is simpler and is pre-
ferred over its Bayesian counterpart when the objective
function is simple to evaluate. But it seems to converge
slowly than the Bayesian approach (as evidenced in
Figure 5(e), where it took 8 iterations to converge). After
these 8 iterations, our proposed ML algorithm shows
a significant performance gain, as its prediction RMSE
is reduced to 3.54 dB, as compared to 3.91 dB earlier
in the baseline LightGBM algorithm using the default
hyperparameters.
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(a) Grid Search (b) Random Search

(c) Bayesian TPE (d) Simulated Annealing

(e) Comparison of hyperparameter tuning approaches
w.r.t. Performance Gain and Convergence Time.
Bayesian optimization performed the best here by
achieving a 10% improvement in prediction RMSE as
compared to baseline LightGBM model, in just 3 search
iterations

Fig. 5. Comparison of different Hyper-parameter tuning approaches for
improving the performance of baseline LightGBM model, in terms of
RSS Prediction RMSE, R2 and convergence time (In subplots (a)-(d),
RMSE and R2 of the LightGBM model is plotted against different combi-
nations of hyperparameters, after performing 5-fold Repeated Cross Val-
idation at each search iteration of the tuning process (dotted line/curve
represents the Mean value and filled area/polygon around it represents
the standard deviation using 5-fold Repeated Cross Validation)

3 COMPARISON WITH EMPIRICAL RADIO PROPA-
GATION MODELS

We also compare the performance of our proposed AI-
driven 3D propagation model based on improved Light-
GBM algorithm with traditional empirical propagation

models, as they are currently used in state-of-the-art com-
mercial planning tools to characterize the propagation be-
havior of a radio signal in different conditions. Empirical
models offer a mathematical equation to calculate the path
loss at any given point from the BS, and are based on data
collected in a specific scenario.

3.1 COST-Hata Model
It is an empirical model for pathloss calculation [5], that
extends the Hata formulae [36] to frequencies upto 2 GHz
and it also takes into account the topo map (DTM) between
the BS and UE and morpho map (DLU) only at the receiver.
The below equation is valid for urban environments with
1.5 m UE height.

Lpath = A1 +A2 ∗ log(f) +A3 ∗ log(hBS) +

(B1 +B2 ∗ log(hBS) +B3 ∗ hBS) ∗ log(d). (9)

Here Lpath is the pathloss (in dB), A1 = 46.3, A2 = 33.9,
A3 = −13.82, B1 = 44.9, B2 = −6.55, B3 = 0 are user-
defined parameters, f is the carrier frequency (in MHz), hBS

is the height of BS and d is the propagation distance between
BS and UE.

For Urban Areas:

L′path = Lpath − a(hUE).

For Sub-Urban Areas:

L′path = Lpath − a(hUE) − 2 ∗ (log(
f

28
))2 − 5.4.

For Quasi-Open Rural Areas:

L′path = Lpath − a(hUE) − 4.78 ∗ (log(f))2 + 18.33 ∗ log(f)

−35.94.

For Open Rural Areas:

L′path = Lpath − a(hUE) − 4.78 ∗ (log(f))2 + 18.33 ∗ log(f)

−40.94.

Where L′path is the corrected pathloss and a(hUE) is the
correction factor for UE height different from 1.5 m.

For Rural/Small Cities:

a(hUE) = (1.1 ∗ log(f) − 0.7) ∗ hUE − (1.56 ∗ log(f) − 0.8).

For Open Rural Areas:

a(hUE) = 3.2 ∗ (log(11.75 ∗ hUE))2 − 4.97.

3.2 Stanford University Interim (SUI) Model
It is derived from the Erceg-Greenstein propagation model
[37] and is valid for 1900-6000 MHz. It also takes into
account the topo map (DTM). It uses the following formula:

Lpath = −7366 + 26 ∗ log(f) + 10 ∗ a(hBS) ∗ (1 + log(d))

−a(hUE), (10)

where,

a(hBS) = a− b ∗ hBS +
c

hBS
,

a(hUE) = X ∗ log
(
hUE

2

)
.
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Here a(hBS) and a(hUE) are the correction factors for BS
and UE antenna heights, respectively, f is the operating
frequency and d is the propagation distance (in km). a = 4.6,
b = 0.0075, c = 12.6 and X = 10.8 are the correction
constants which depend on the terrain type [6].

3.3 Standard Propagation Model (SPM)

It is derived from the Hata formulae and is valid for 150-
3500 MHz. It also takes into account the topo map (DTM)
and morpho map (DLU) between the BS and UE. It is given
by the following formula:

Lpath = K1 +K2 ∗ log(d) +K3 ∗ log(h′BS) +K4 ∗ Ldiff

+K5 ∗ log(d) ∗ log(h′BS) +K6 ∗ h′UE

+K7 ∗ log(h′UE) +Kclutter ∗ f(clutter). (11)

Here K1 = 23.8, K2 = 44.9, K3 = 10.89, K4 = 0.19,
K5 = −10, K6 = 0, K7 = 0, Kclutter = 1 are user-
defined parameters, h′BS and h′UE are the effective BS and
UE heights, respectively, by taking into account the earth
terrain. Ldiff is the diffraction loss calculated by Deygout
method and f(clutter) is the weighted average of the user-
specified clutter losses, in the propagation path between BS
and UE [7].

3.4 ITU 452 Model

It is based on the ITU-R P.452-15 recommendation [8] and
is valid for 100-500,000 MHz band. It takes into account
the LoS/NLoS state, diffraction, tropospheric scatter, surface
ducting and elevated layer reflection and refraction. It is
given by the following formula:

Lpath = −5 ∗ log
(

10−0.2∗La + 10−0.2∗(Lb+(Lc−Ld)∗Fj)
)

+ABS +AUE, (12)

where,

Fj = 1 − 0.5 ∗
[
1 + tanh

(
2.4 ∗ θ − 0.3

0.3

)]
.

Here La is the basic transmission loss due to troposcat-
ter, Lb is the minimum basic transmission loss with LoS
propagation and over-sea sub-path diffraction, Lc is the
basic transmission loss associated with diffraction and LoS
or ducting/layer-reflection enhancements, ABS and AUE are
additional losses due to BS and UE surroundings, respec-
tively, Fj is the interpolation factor to take into account the
path angular distance and θ is the path angular distance.
These parameters are further calculated from equations in
ITU-R recommendation P.452-15 [8].

3.5 Performance Comparison

The proposed ML-based propagation model is compared
against traditional empirical propagation models, in terms
of predictive performance, generalization performance and
computational performance.

3.5.1 Predictive Performance
In Figure 6, a box-plot representation is used to compare the
performance of our proposed model with the state-of-the-art
empirical propagation models, by taking highly precise ray-
tracing based RSS estimates as ground truth. The data used
here as benchmark is unseen and not used earlier in the
training or validation process of our proposed ML-based
model. The RSS is calculated from the empirical models
using PUE = PBS − Lpath, where PUE is the UE’s RSS, PBS is
the BS’s transmit power and Lpath is the pathloss calculated
using (9)-(12). We can see that the predicted RSS using our
proposed AI-driven model has much less error as compared
to other empirical models, showing a 65% improvement
over the best performing empirical model (3.2 dB RMSE as
compared to 9.1 dB for SUI).

3.5.2 Generalization Performance
The reason for the gain in accuracy of the proposed model
lies in its generalizability as compared to other empirical
propagation models. Firstly, ML-based model, thanks to its
ability to incorporate higher degrees of freedom compared
to an empirical, has an intrinsic advantage over empirical
model. Empirical models are usually scenario-specific and
have different fine-tuned parameter values for different ge-
ographic scenarios (e.g., urban, sub-urban, rural etc.) using
extensive channel measurements from that scenario. The
key cost of this advantage is opaqueness or black box nature
of model, which we will address in the next section.

Secondly, through the feature engineering process, the
proposed model leverages a novel combination of key
features, which are not included in traditional empirical
models, and can characterize the physical and geometric
structure of the environment traversed by a signal in its
propagation path (e.g., indoor distance, Manhattan distance,
number of building penetrations in each clutter type etc.),
and are sensitive to the change in network parameters (e.g.,
horizontal angular separation, vertical angular separation
etc.). These additional features (or degrees of freedom)
enable the ML-model to be trained on combined data from
different geographic scenarios and hence provide more scal-
ability and generalizability.

3.5.3 Computational Performance
While the proposed model yields better accuracy than em-
pirical models, our analysis (shown in Figure 7) shows that
its computational complexity and therefore implementation
cost is much lower than the highly sophisticated ray-tracing
based tools that are being widely used in commercial cell
planning tools, because it only uses the key features as input
to the trained ML-based model to predict the RSS, as com-
pared to ray tracing, which approximates the interactions
of all rays with the neighboring environment to estimate
the pathloss, hence computationally inefficient. As a result,
it’s much faster than ray-tracing, and thereby addresses a
much-complained problem in ray-tracing based tools, by
industry professionals. The preliminary implementation of
the proposed framework has demonstrated a 13x decrease
in prediction time as compared to ray-tracing approach,
and can be further optimized to make it more efficient (for
instance, by using parallel computing).
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4 SECONDARY ANALYSIS FOR INTERPRETABILITY
AND SENSITIVITY

One of the key caveats of applying machine learning is lack
of interpretability of the resultant models. This challenge
often undermines the uptake rate of ML based models,
particularly in cellular networks where stakes are high.
Therefore, knowing why a model is predicting what it is
predicting can be a very useful auxiliary information on top
of accuracy, prediction and training agility and robustness
to sparsity of training data. Model interpretation is also a
vital debugging tool, as it can help you learn about the
problems (e.g., biasness) in the model and for ensuring that
small changes in the input do not lead to large changes in
the prediction. Therefore, in this section, we try to make our
proposed black-box machine learning model more trustable,

interpretable and robust [38].

4.1 Sensitivity Analysis
Sensitivity Analysis is a useful technique for investigating
the model’s behavior for specific scenarios of interest and
for providing a global insight into the model’s behavior.
This is done by quantifying the contribution of each input
feature, in the variability of the model output. These values
are called sensitivity indices.

4.1.1 Sobol Indices
The most popular method of finding these sensitivity in-
dices is Sobol Method [39], which is based on the variance of
model output. However, they are very difficult to interpret
if there is a statistical dependence between features. For
Instance, in the case of independent features, there exists a
unique Sobol Index for a feature, representing the variance in
model output solely by that feature, also called First Order
Sobol Index. But if the features have dependency between
them, then the first order indices fail to capture the con-
tribution of each feature, and Second Order Sobol Indices are
used to express the contributions of the interactions between
each pair of features, and so on for higher orders.

4.1.2 LOCO Variable Importance
Leave-one-covariate-out (LOCO), or even Leave-one-
feature-out (LOFO) [40] is another method for finding
variable importance (or sensitivity) in the model output.
It scores each row in the training data for each feature (or
covariate). In each scoring run, one feature is missed and
its impact on the output prediction is measured. The feature
with the most impact on the predicted outcome is taken
to be the most important. However, its performance can
quickly deteriorate if there are complex non-linear depen-
dencies in a model, in which case Shapley values will be a
better technique.

4.1.3 Shapley Values
The lack of accurate model interpretation using the above
methods, when there are complex non-linear interdepen-
dencies between features, can be overcome by using Shapley
values [41], which is a Nobel-laureate concept in cooperative
game theory and economics, to determine the contribution
of each player in a collaborative game to its success, but
can be used to calculate feature importance in a model and
thus achieve a good degree of interpretability, even for non-
parametric models. In the case of dependence between a group of
input features, the effect of interaction between features is equally
allocated to each feature within the group.

4.2 Model Interpretation with SHAP
A recently introduced method called SHAP (SHapley
Additive exPlanations) [42], based on Shapley values,
measures how much each feature contributes, either
positively or negatively, to the model output. An advantage
of using SHAP is that each sample in the data has its own
set of SHAP values, unlike traditional methods, which only
tells the importance of a feature across the whole dataset.
This is particularly useful, as we can observe the effect on
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model output, for the whole range of each input feature. In
our further analysis, we have used the TreeSHAP algorithm
[43], which is an efficient approach of calculating shapley

values of ML models belonging to decision tree family (e.g.,
LightGBM, XGBoost etc.).

4.2.1 Feature Importance using SHAP Summary Plots
In Figure 8(a), SHAP values of some features are plotted for
all measurement instances, which show the distribution of
impacts on the predicted RSS value, for each input feature.
Here the points are colored by the respective feature’s value and
piled up vertically to show density. For each measurement
sample, the sum of SHAP values (for every feature) equals
the variance in the predicted output from its mean value
across all samples. For instance, from domain knowledge we
know that the RSS of a user will be highest if its horizontal
angular separation from the BS antenna is close to zero and
vice versa, due to the impact of antenna beamwidth on its
attenuation. Similarly, the RSS of a user will be high if it’s
close to the BS, therefore, the impact of propagation distance
is highest at its extreme values, same is the case for indoor
distance and outdoor distance. On the other hand, Vertical
Angular Separation is generally inversely proportional to the
distance between BS and UE, therefore its impact is highest
when it has a high value and vice versa. Also the impact
of Effective BS Height is high, if the net vertical distance
between the UE and BS is high, and vice versa. Similar
trends can be seen for other features as well.

In Figure 8(b), the mean SHAP value for each input
feature is plotted. These results show the average impact of
each feature on the model output (i.e., predicted RSS value).
We can see that, contrary to the common understanding
where distance is considered and used in literature as the
key determining factor for pathloss (or RSS), the Indoor
Distance has the highest feature importance (or impact) in
the RSS model. On the other hand, BS Clutter Type in the
propagation path has the lowest impact.

4.2.2 Feature Inter-Dependency using SHAP Dependency
Plots
The interplay of combinations of features can be uncovered
using SHAP dependence plots. By plotting the SHAP value
for many samples in the dataset (See Figure 9), we can see
that the SHAP value (attributed importance) of a feature
changes as its value varies. However, its interaction with
other features in the model is captured by its vertical disper-
sion. Unlike standard partial dependence plots, that only plot a
line, here each dot (sample) is colored with the value of an
interacting feature.

In Figure 9(a), we can see that the impact of propaga-
tion distance decreases as its value increases. Whereas, as
mentioned before, indoor distance has an interaction with
the propagation distance that affects its relative importance.
Figure 9(b) shows the effect of effective BS height on the
attributed feature importance of vertical angular separation,
where high value of effective BS height decreases the impor-
tance of vertical angular separation when its value is greater
than zero, and vice versa. Similarly, in Figure 9(c), we can see
the increase in feature importance of indoor distance at points
where vertical angular separation is high. Figure 9(d) shows

that feature importance of Manhattan distance and its inter-
play with horizontal angular separation. In Figure 9(e), as
we know that the increase in number of building penetrations
in the propagation path between a BS and UE, increase its
indoor distance as well in most cases, results in the decrease
of its feature importance (Figure 9(e)). Lastly, Figure 9(f)
shows the feature importance of effective BS height and its
interaction with vertical angular separation.

4.3 Insights from Interpretability/Sensitivity Analysis

To interpret the model predictions and gain insights into the
black-box model by turning it into rather grey-box model,
SHAP algorithm is used. The SHAP Summary plot (or the
feature importance plot) in Figure 8 shows the mean impor-
tance of each feature in the variability of the model output.
This plot is particularly useful for a system-level control as it
shows that what control knob (or network parameter) needs
to be played the most for tuning network configuration to
get optimal performance. SHAP Dependency plots (shown
in Figure 9), on the other hand, shows the behavior of
feature importance (or SHAP value) with respect to the
value of its corresponding feature and its interaction with
the most dependent feature. This plot is useful for observing
the range of values for a pair of features that has the highest
impact on the model output. For Example, Figure 9(c) shows
that the indoor distance and vertical angular separation have the
highest impact on the model output when 0 < dindoor < 20 m
and φver > 10◦.

4.4 Utility of Insights Gained from the Proposed Model

The information yield by the SHAP analysis, that has trans-
formed the originally black-box model into a grey-box model,
can be exploited in real networks for several use cases.
Below we identify three key use cases:

1) Addressing the Sparsity Challenge: A key challenge in
applying ML to wireless networks is sparsity of training
data i.e., gathering data for complete parameters ranges
is often very difficult, if not impossible. For example,
its not viable to gather RSS measurements against all
antenna tilt range (0-90) in a live network. Furthermore,
usually the process of gathering and enriching training
data is costly. The proposed framework builds a grey-
box model instead of a black box model, thanks to
the insights provided by the SHAP analysis, can be
leveraged to address the aforementioned challenges
of data sparsity. The knowledge that what parameter
ranges are more crucial to the model can be exploited
for selective collection and enrichment of training data.
This can provide a lower cost/benefit ratio as compared
to a uniform or random collection or enrichment of
training data. For example, based on observation from
Figure 9(c), instead of uniform or random measurement
campaigns, more resources should be dedicated to data
collection for Antenna Tilt and UE’s RSS data pairs cor-
responding to φver > 10◦ (vertical angular separation)
and Antenna Tilt/Azimuth and UE’s RSS data pairs
corresponding to 0 < dindoor < 20 (indoor distance in the
propagation path).
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(a) SHAP Value Distribution (b) Mean SHAP Value

Fig. 8. (a) SHAP Summary plots showing Top 9 Input Features (a) SHAP Value (Impact on RSS) variance w.r.t respective feature values (b) Mean
SHAP Values (Average Impact on RSS)
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Fig. 9. Impact of various features and their inter-dependence in predicting Received Signal Strength. Useful for model interpretability and finding
important feature regions (or values) for intelligent data collection and network automation

2) Intelligent Optimization: Current design and post de-
ployment optimization paradigm of cellular networks
rely mostly on the domain knowledge. However, given
the large number of design and optimization parame-
ters per site—already roughly 1500/site in LTE — and
growing complexity trend towards 5G and beyond,
achieving optimal design and operation in emerging
cellular networks by solely relying on domain knowl-
edge is going to become inviable approach. The insights
gained from the semi transparency (vis-a-vis greyness)
of the presented model achieved through the proposed
framework can be very helpful towards more effective
and resource efficient design and post deployment opti-
mization of the network. For example, while searching
for optimal design and configuration parameters, the
parameters and regions of the search space with pa-

rameter ranges identified by the proposed framework
to be more influential on the KPIs, can be explored more
exhaustively, compared to other parameters and parts
of the parameter range. This approach is expected to
improve the design and optimization processes com-
pared to uniform (brute force based) or pseudo random
or heuristic search algorithms (e.g., genetic algorithms,
simulated annealing) based design and optimization.

3) Lighter ML model for low-latency use-cases: The in-
sights gained from the SHAP analysis can also be used
to select the most important features for building our
proposed ML model. Therefore, a lighter version of
the model can be built using the selected key features
to further reduce the computational complexity of the
model. The results from this analysis (in Table 6) show
that by using the top 5 features (from Figure 8(b)), i.e.,
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indoor distance, propagation distance, vertical angular
separation, horizontal angular separation and effective
BS height, the training and prediction time of the result-
ing RSS prediction model can be significantly reduced
(by around 70%) at the cost of negligible loss in accu-
racy (by around 3%) to enable low latency use-cases for
the proposed SHAP-enabled lighter model. By allowing
real-time predictions, such lightweight model can be
used for real time AI-powered closed loop optimization
of the network, thus acting as a key enabler for the
Ultra-Reliable Low-Latency Communication (URLLC)
in 5G networks.

TABLE 6
Performance Evaluation of the SHAP-enabled Lighter Model using

5-fold Repeated Cross Validation

Performance
Metric

Baseline ML
Model using
all features

Lighter ML
Model using

Top 5 features

Net
Gain

RMSE 3.542± 0.036 3.661± 0.038 −3.35%

R2 0.854± 0.003 0.844± 0.003 −1.17%

Training Time 1.896± 0.090 0.681± 0.049 +64.07%

Prediction Time 0.077± 0.005 0.023± 0.002 +70.13%

5 CONCLUSION AND FUTURE WORKS

In this paper, we propose a framework for a robust and
scalable AI-driven 3D propagation model for cellular net-
works. To enable this framework, we have identified a novel
set of key predictors, that can characterize the complex
physical and geometric structure of the propagation envi-
ronment. Performance comparison of several state-of-the-art
machine learning algorithms including Linear Regression,
K-Nearest Neighbors, Decision Tree, Random Forest, Ex-
tremely Randomized Trees, Adaptive Boosting (AdaBoost),
Gradient Boosting Decision Trees (GBDT), Extreme Gradient
Boosting (XGBoost), Light Gradient Boosting (LightGBM),
Categorical Boosting (CatBoost) and Deep Neural network
(DNN) is done to highlight their strengths and weaknesses
in modeling the propagation through complex real environ-
ment using the proposed key predictors as input features.
The results show that LightGBM outperforms other ML
tools, including DNN, in terms of computational complex-
ity and robustness to extremely sparse training data (just
2%), as often is the case in real networks. On the other
hand, compared to other tested ML tools, DNN’s perfor-
mance deteriorates the most when the training data be-
comes sparse. The proposed ML-Based model is compared
against state-of-the-art empirical models including COST-
Hata, Stanford University Interim (SUI), Standard Propa-
gation Model (SPM) and ITU 452 Model. Proposed ML-
based model yields 65% higher accuracy in RSS estimation
as compared to empirical propagation models, when highly
sophisticated ray-tracing based data for the city of Belgium
from a commercial planning tool is used as ground truth. On
the other hand, proposed model offers 13x reduction in pre-
diction time as compared to ray-tracing based commercial
planning tool. The black box nature of the proposed model
is transformed into relatively more interpretable grey-box

model using SHAP method. The insights presented through
interpretability analysis offer new research directions such
as intelligent data gathering for addressing the challenge of
training data sparsity, finding the optimal combination of
network configuration parameters and building lighter ML
models for low-latency use-cases.

The presented system level pathloss prediction model
combined with the interpretability analysis thus manifests
a framework that can act as a corner stone for the Artificial
Intelligence driven Self Organizing Networks (AISON), as
opposed to current SON which lacks interpretable models
for quantifying network performance as function of the
plethora of network configuration parameters. Furthermore,
in addition to system level pathloss model, the proposed
framework can be extended to an AI-driven link level
channel model for channel estimation, physical layer design
etc. Such extension will require incorporating many other
channel parameters such as delay spreads and angular
spreads etc., that can be neglected in system level path lass
model due to the much larger temporal and spatial scale
that can suffice for system level planning and optimization,
but cannot give meaningful insights for link level design.
Other possible extensions are developing both link level and
system level channel models for higher frequency bands.
This is needed especially for next-generation 3D hetero-
geneous cellular networks in mmWave/Terahertz bands
with flying Unmanned Aerial Vehicle (UAV)-based BSs [44],
[45] and Reconfigurable Intelligent Surfaces (RIS) [46], since
propagation conditions will be significantly different than
sub-6 GHz bands and conventional network planning using
empirical model will cease to be a viable option.
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