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A B S T R A C T   

Cough acoustics contain multitudes of vital information about pathomorphological alterations in the respiratory 
system. Reliable and accurate detection of cough events by investigating the underlying cough latent features 
and disease diagnosis can play an indispensable role in revitalizing the healthcare practices. The recent appli-
cation of Artificial Intelligence (AI) and advances of ubiquitous computing for respiratory disease prediction has 
created an auspicious trend and myriad of future possibilities in the medical domain. In particular, there is an 
expeditiously emerging trend of Machine learning (ML) and Deep Learning (DL)-based diagnostic algorithms 
exploiting cough signatures. The enormous body of literature on cough-based AI algorithms demonstrate that 
these models can play a significant role for detecting the onset of a specific respiratory disease. However, it is 
pertinent to collect the information from all relevant studies in an exhaustive manner for the medical experts and 
AI scientists to analyze the decisive role of AI/ML. This survey offers a comprehensive overview of the cough 
data-driven ML/DL detection and preliminary diagnosis frameworks, along with a detailed list of significant 
features. We investigate the mechanism that causes cough and the latent cough features of the respiratory 
modalities. We also analyze the customized cough monitoring application, and their AI- powered recognition 
algorithms. Challenges and prospective future research directions to develop practical, robust, and ubiquitous 
solutions are also discussed in detail.   

1. Introduction 

Over the course of recent years, the healthcare domain has experi-
enced a myriad of refinements in terms of cutting-edge technologies and 
innovative treatment methods; notwithstanding, tremendous efforts are 
still required to prioritize the notion of healthcare over sick care. By 
following the state-of-the-art retrospective practices, when the patients 
provide their medical history in the clinical settings, they might not be 
discrete about reporting the symptoms specifics. This continual moni-
toring of symptoms can cause predicaments; worse case scenarios may 
lead to the diagnostic errors. Therefore, for the eradication of this issue, 
there have been increasing efforts towards the development of predic-
tive and representative healthcare diagnosis systems. The revolution of 
existing healthcare practices is possible if we redirect the research focus 
towards preventive continuous monitoring instead of continual 

monitoring of symptoms, hence, prioritizing healthcare over sick care 
and leaving disease treatment as a last resort. 

Due to the unprecedented interest towards data-driven processes and 
intelligent software, Computer Aided Detection (CAD) and Artificial 
Intelligence (AI)-based tools are gaining much attention. These intelli-
gent data-driven medical models are showing considerable potential in 
assisting radiologists, healthcare professionals, and medical practi-
tioners for the patient examination and accurate diagnosis, thus revo-
lutionizing a phenomenal and integrated healthcare sector [1,2]. Thus, 
Artificial Intelligence (AI) is poised to play a significant role to make the 
healthcare system more cost effective, personalized, precise, and pro-
active [3–5]. 

Due to the prodigious improvements in the computing power and 
storage resources in the last decade, AI has already gained substantial 
attention in many fields including smart healthcare [6–8]. In response to 
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the increased importance of using non-intrusive intelligent methods, 
and with the advent of AI, techniques have been evolved to become 
more refined and automated for the efficient information extraction 
from imaging modalities such as magnetic resonance imaging (MRI), 
computed tomography (CT), and ultrasound, in order to ensure better 
patient care. In addition, several Machine Learning (ML)-based frame-
works are being leveraged for the general diagnosis of virulent maladies 
related to various systems, for instance, neurological [9], cardiovascular 
[10], digestive [11], and respiratory systems [12]. Although AI algo-
rithms have already demonstrated acclaimed performance in 
image-based diagnosis [13,14], voice-based diagnosis is also gaining 
attention and making prominent progress as sounds carry signature of 
numerous diseases [15–17]. For example, it has been shown that res-
piratory sounds, when analyzed by leveraging ML or Deep Learning (DL) 
techniques, can provide significant insights, thus enabling a powerful 
diagnostic tool [18–22]. These AI models demonstrate highly accurate 
and predictive outcomes, and can play an indispensable role in revital-
izing the healthcare practices. 

Among other respiratory sounds like wheeze, crackles, breathing, 
and stridor, cough is one of the outstanding sounds exhibiting unique 
features. Cough contains vital information for numerous respiratory 
conditions [23] manifesting as a symptom of over twenty medical con-
ditions. The distinct latent features in cough can be exploited for the 
detection as well as preliminary diagnosis of various diseases by 
leveraging sophisticated and intelligent ML or DL algorithms trained 
through the cough acoustic data. Since the start of this century, there is a 
rapidly moving research landscape in this particular domain, several 
AI-based solutions have been presented which successfully detect cough 
events in the presence of other environmental noise and diagnose 
related respiratory diseases [24]. The feasibility of diagnosing numerous 
respiratory diseases with satisfactory high accuracy leveraging cough is 
supported by many studies [25–31]. In [31], researchers showed that 
cough alone has the potential to be used as a diagnostic tool to classify 
diseases such as, asthma, pneumonia, bronchiolitis, croup, and lower 
respiratory tract infections with over 80% sensitivity and specificity. 
Recently, viability of an AI-based approach analyzing cough sounds for 
the diagnosis of COVID-19 is demonstrated in [32]. Mostly, these 
AI-based algorithms run directly on portable devices such as smart-
phones and smartwatches, hence triage screening of pulmonary diseases 
can be performed free of charge at home. Nonetheless, the main focus of 
these works is the detection or diagnosis of different lung conditions (e. 
g., pulmonary nodules, tuberculosis, and interstitial lung diseases) in 
chest radiography with the aid of AI. A systematic review for the 
computer-based analysis of lung auscultations and respiratory sounds is 
also presented in [33]. In the literature, efforts have also been made in 
collecting and presenting works that deal with pulmonary diseases using 
AI [34,35]. Recently, to overview the existing manual and automatic 
settings for cough counting and highlight the popular signal processing 
and AI techniques used in the cough monitoring devices, the authors 
presented a short review in [36]. Another article [37] provided a brief 
review of DL classification models for the pulmonary diseases leveraging 
cough audio analysis, the authors also provided the diagnosis of ten 
respiratory conditions. The outbreak of ongoing COVID-19 pandemic 
steered the focus of research to investigate the potential of AI and the 
advances of ubiquitous computing for timely diagnosis and to combat 
the spread of the disease [32,38–45]. To provide a comprehensive and 
systematic overview of all the ongoing research efforts particularly in 
the domain of AI and ML by leveraging speech, image, and textual data 
for timely diagnosis of COVID-19, there are some notable studies 
[46–50]. In [46], the authors provided an exhaustive list of open access 
databases including CT scans, X-ray images, text data, and cough sounds 
for COVID-19 diagnosis. A systematic review is also conducted around 
six key questions discussing the usability of AI/ML methods for disease 
classification, prediction, risk assessment, and vaccine development for 
COVID-19 [48]. The authors briefly mentioned some speech and audio 
datasets. A comprehensive survey is conducted to study the five 

important use cases of AI for COVID-19 including COVID-19 diagnosis 
by leveraging data (images, sound, and text), prediction, patient be-
haviors, vaccine development and constructing supporting applications, 
and by exploiting machine learning techniques [47]. Other related 
works [49–51] review the ML and DL methods for COVID-19 diagnosis 
using medical images, non-invasive measures, and sound acoustic 
analysis for several applications such as timely treatment, emotion 
detection, and disease spread surveillance. However, the scope of these 
studies is towards the ongoing pandemic, i.e., COVID-19, by leveraging 
the available datasets. 

There is a need for an exhaustive review that captures and discusses 
the potential of cough-based data-driven AI models for the diagnosis of 
numerous respiratory diseases, discussed in the literature. Therefore, in 
this work, we provide a detailed survey of techniques that have been 
presented in the literature for cough detection and diagnosis of different 
diseases using cough within one framework. In particular, we present a 
comprehensive survey of the existing literature on cough-based ML or 
DL models for the detection and diagnosis of over 25 respiratory con-
ditions. The main focus is to summarize all the important algorithms 
discussed in the literature to date that offer a reliable accuracy in pre-
dicting a disease by just using the cough sounds. Thus, encouraging the 
researchers to find the information easily while working in the health-
care sector. 

Our main contributions of this work are summarized as follows:  

• We delineate the mechanism that produces cough, the distinctive 
features, and the cough types that are considered as hallmarks of 
certain diseases. We provide the motivation of using CAD and ML 
tools for the characterization of subtle/nuance features in cough for 
better diagnosis.  

• We identify the common respiratory conditions and characterize the 
types of cough based on duration and compare the cough 
characteristics.  

• We provide the important procedures that are essential for the 
development of a robust ML/DL-based framework for efficient and 
accurate detection/diagnosis. This includes the data acquisition, 
preprocessing, feature engineering, and model training.  

• We also summarize the state-of-the-art AI-based solutions that 
exploit unique latent cough features to successfully detect, monitor, 
and diagnose different respiratory diseases.  

• We provide a brief overview of the detection and diagnosis ML 
techniques trained on the non-cough sounds. 

Organization of the Paper: The important acronyms used in this article 
are summarized in Table 1, whereas Fig. 1 shows the taxonomy of the 
sections and subsections discussed in this study. The next Section II 
discusses the mechanism that produces cough and its distinctive fea-
tures. Section III presents the types of cough based on duration, while 
Section IV describes the data acquisition methods. ML/DL pipeline in 
detection/diagnosis for cough based respiratory conditions is explained 
in Section V. Section VI briefly discusses about the detection and diag-
nosis leveraging non-cough sounds. Different open research issues and 
future recommendations are outlined in Section VII. Finally, we 
conclude the paper in Section VIII. 

2. Cough producing mechanism and features 

Cough is one of the most common signatures of numerous respiratory 
diseases. It is usually caused by either viral or bacterial respiratory in-
fections. Fig. 2 shows the taxonomy of infectious and non-infectious 
triggers that manifest cough as a symptom and have the possibility of 
eventually leading to a medical condition. In this section, we show how 
different respiratory conditions associated with different diseases have 
distinctive cough acoustics. These distinguishable cough features pro-
vide an opportunity for the AI models to get training and identify the 
underlying disease in a timely manner, thus providing assistance to the 

A. Ijaz et al.                                                                                                                                                                                                                                      



Informatics in Medicine Unlocked 29 (2022) 100832

3

medical professionals. 

2.1. Mechanism that produces cough 

Cough is a protective reflex mechanism against any foreign object or 
irritant. However, it becomes a pathological reflex when it does not 
perform the function of clearing the airways. In some cases, this mech-
anism causes pain in the throat, chest, or behind the sternum. In addi-
tion, it has the ability to affect not only the psychosocial domain but is 
potentially harmful to the patient’s airway mucosa [52]. 

Cough reflex consists of afferent, central, and efferent components. It 
is initiated by the stimuli of vagus nerve which functions as cough re-
ceptors [53]. Cough receptors are spread through pharynx, larynx, tra-
chea, main carina, bronchi, and smaller distal airways. In the literature, 
different types of coughs can be found. Fig. 3 provides a thorough 
illustration of the types of cough related to different diseases, and their 
association with the various anatomical sites of the respiratory system. 
The receptors located on the larynx, pharyngeal wall, and tracheo-
bronchial tree respond to mechanical stimuli and various chemical ir-
ritants. The external auditory canal, eardrum, paranasal sinus, 

diaphragm, pericardium, pleura, and pericardium have the mechanical 
receptors. The airway afferent nerves include: rapidly adapting re-
ceptors, slowly adapting stretch receptors, unmyelinated C fibers, and 
Ab cough fibers. Rapidly adapting receptors include A/3 stretch re-
ceptors which have a low threshold for activation by stimuli. The rapidly 
and slowly adapting stretch receptors preferentially respond to me-
chanical relative to chemical stimuli. They respond to various me-
chanical stimuli including variation in lung volumes, airway smooth 
muscle constriction, and pulmonary edema. These receptors are rela-
tively insensitive to the majority of direct chemical stimuli but respond 
to the mechanical changes induced by chemical stimuli including 
changes in lung volumes, airway smooth muscle tone and mucous hy-
persecretion. C fibers have lower sensitivity than rapidly and slowly 
adapting receptors for mechanical stimuli. There are likely two or more 
types of the involuntary cough reflex. The first type is caused by the 
stimulation of bronchopulmonary C-fibers by inflammation, tissue 
injury, or chemical irritants (including capsaicin, sulfur dioxide, bra-
dykinin, and citric acid) and associated with sensation “urge to cough”. 
The second type aspiration-induced involuntary cough reflex occurs with 
the activation of mechanosensory-responsive Ab fibers [54]. On stimu-
lation, the cough receptor sends afferent impulses via the vagus nerve to 
the cough center in the medulla and interconnect to neural networks in 
the brain. The cough center creates a signal that propagates to the vagus, 
phrenic, and spinal motor nerves to expiratory musculature to induce 
coughing [55]. 

2.2. Features of cough 

There are several types of cough with unique characteristic features 
of sound which healthcare professionals are able to distinguish. How-
ever, there are many respiratory conditions that can cause same type of 
cough, making it difficult to be distinguishable by the human ear. The 
eminent five cough features that help the physicians to identify the 
associated diseases are:  

• Dry cough: It is also referred to as a non-productive cough because it 
does not produce phlegm and sounds like a hacking cough. It can be 
caused, for example, by irritants such as air pollutants, non- 
infectious conditions such as upper airway cough syndrome, 
asthma, heart failure, gastro-esophageal reflux disease, side effects of 
some medications, or viral infections of upper respiratory tract [56]. 

• Wet (productive) cough: This type of cough produces phlegm, some-
times with impurities of pus or blood; sounds low, heavy, mucousy, 
and may come with a rattling or wheezing sound as well as tightness 
in the chest [57]. Productive cough is often caused by infectious 
diseases such as flu, cold, bronchitis, pneumonia, tuberculosis, lung 
abscess, or other conditions including bronchiectasis, chronic 
obstructive pulmonary disease, and cystic fibrosis.  

• Whooping cough: Spasmodic and continuous coughing, which result 
in intense inhalation after the episode and produce the whooping 
sound. This cough can be an indication of pertussis [58].  

• Barking cough: It sounds like a barking seal, often with a stridor (high- 
pitched whistling sound during inhalation or exhalation). Barking 
cough is a symptom of croup, tracheomalacia or psychogenic cough 
[59].  

• Staccato cough: Cough that comes with a series of outbursts having at 
least one breath in between two consecutive outbursts. It is caused by 
chlamydia pneumonia in infants and is regarded as staccato due to 
inspiration between each single cough [60]. 

2.3. Potential of cough as a diagnostic tool 

Cough is considered as a symptom of various ailments. Experienced 
healthcare professionals use cough reflex interpretation as one of the 
manifestations helping them to associate it with discrete diseases. For 
instance, barking cough is associated with pertusius, whereas common 

Table 1 
List of acronyms.  

Acronym Description 

AI Artificial Intelligence 
ADAM Automated System for Asthma Monitoring 
ANN Artificial Neural Network 
BC Bayes Classifier 
CNN Convolutional Neural Network 
CPNN Constructive Probabilistic Neural Network 
DBN Deep Belief Network 
DT Decision Tree 
DL Deep Learning 
DWT Discrete Wavelet Transform 
DNN Deep Neural Network 
ECC Energy Cepstral Coefficients 
FT Fourier Transformation 
FCM Fuzzy C-means Clustering 
GFCC Gammatone Frequency Cepstral Coefficient 
GMM Gaussian Mixture Model 
GMM-UBM Gaussian Mixture Model–Universal Background Model 
HACC Hull Automatic Cough Counter 
HMM Hidden Markov Models 
k-NN k Nearest Neighbor 
LCM Leicester Cough Monitor 
LSTM Long Short Term Memory 
LPCS Linear Predictive Coding Spectrum coefficients 
LVQ Learning Vector Quantization 
LR Logistic Regression Model 
LPCC Linear Prediction Cepstral Coefficients 
LPC Linear Prediction Coefficients 
LSF Line Spectral Frequencies 
LogE Log Energy 
MelSpec Melscaled spectrogram 
MFCC Mel Frequency Cepstral Coefficients 
MR Multiple Regression 
MLP NN Multilayer perceptron Neural Network 
MFB Mel Filter Bank Dimension 
ML Machine Learning 
NN Neural Network 
NB Naive Bayes 
NNC Nearest Neighbor Classification 
NMF Non-negative Matrix Factorisation 
ONN Octonionic Neural Network 
OC-SVM One Class SVM 
PNN Probabilistic Neural Network 
PLP Perceptual Linear Prediction 
PCA Principal Component Analysis 
RF Random Forest 
RNN Recurrent Neural Network 
SVM Support Vector Machine 
UBM Universal Background Model 
Zcr Zero Crossing  
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causes of dry or hacking cough are upper airway cough syndrome 
(UACS), asthma, and gastroesophageal reflux disease (GERD). In case of 
viral croup, inflammation of the subglottic soft tissue occurs resulting in 
a rasping quality of the voice. Fig. 4 shows a summary of cough types as 
well as different diseases associated to various human systems. 

Trained and experience physicians have been exploiting cough sig-
natures to perform a differential diagnosis for various respiratory con-
ditions, for instance, COPD, pneumonia, bronchitis, pertussis, 
pharyngitis, asthma, and tracheitis [23,61,62]. The reason for the ac-
curate diagnosis by using cough is possible because the symptoms and 
the location of the underlying irritants in the respiratory system are 
quite distinctive, which lead to the audibly distinguishable cough 
sounds. Nonetheless, an untrained human ear is incapable of charac-
terizing the coughs caused by the different diseases delineated in the 

figure. It is evident from the figure that there is an overlap of cough types 
and the associated diseases, making it difficult for the physicians to use 
cough as a preliminary diagnostic tool with guaranteed accuracy. 

For the characterization of cough based on acoustic analysis and 
auscultation, a human hear is able to distinguish cough based on limited 
audible features such as timbre, loudness, pitch, and duration. These 
different features along with their attributes and description are listed in 
Table 2. Other features that can aid the medical professionals to further 
classify the cough are wetness and dryness. Hence, common cough types 
that are considered as hallmark of certain diseases are identified based 
on the limited audible features. The fact that cough can be characterized 
in only five or six dimensional space by its virtue is limiting its ability to 
be uniquely associated with a certain disease. A detailed study is per-
formed in [63] to analyze how the healthcare professionals interpret 

Fig. 1. Organization of the paper.  
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cough sounds based on the acoustic features. The results suggested that 
the medical professionals are able to recognize some of the qualities of 
the cough sounds based on the aforementioned limited features, how-
ever, the rate of accurate clinical diagnosis was identified only in 34% of 
cases. It is demonstrated in the study that dry or wet cough were pre-
cisely recognized in 76.1% of cases, whereas cough with accompanied 
wheeze was recognized only in 39.3% of cases, as it is difficult to 
distinguish wheeze in the cough [63]. Therefore, it can be interpreted 
that there is an overlap between the characteristics of different cough 
sounds, making it hard to be distinguishable by human ear based on the 
restricted features. Thus, it is ineffective to use cough for preliminary 
diagnosis as the limited audible features are not enough to delineate all 
the diseases. Based on these facts, it is difficult to project cough in finer 
characterization space for the detailed analysis. Consequently, this is a 
dire need to complement the existing medical practices and to provide 
additional assistance to the physicians for better cough characterization 
and accurate disease diagnosis. 

2.4. AI-based cough diagnosis models 

Building on the insights from the healthcare domain knowledge, it 
can be argued that it is possible to develop a robust, reliable, and effi-
cient AI-powered screening and diagnosis tool using cough sounds. This 
is because ML and DL models have the ability to process huge datasets 
and analyze hundreds of hidden features of coughs, which are beyond 
human capability to comprehend [64–67]. By using these models, we 
can project cough in higher dimensional space and, hence, able to 
separate new unique features that are otherwise not possible to be 
distinguished by human ear due to the overlapping in the lower 
dimensional space [68–72]. For instance, a human ear can detect only a 
handful of features (i.e., four to five). These features have binary pos-
sibilities such as dry or wet cough, barking or no barking cough, etc. 
Thus, there is a possibility of only 25 = 32 combinations of features. 

In case of Artificial Intelligence, ML/DL models are able to classify 
numerous features, each feature further having a range of possible 
values. Theoretically, these models can classify between millions of 
possible combinations of features which human ear cannot distinguish. 
As shown in Table 3, for each audio subframe, there exists at least 312 

Fig. 2. A taxonomy of cough triggers.  

Fig. 3. Types of cough.  
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unique temporal, spectral, and statistical cough features that can be 
possiblyTTy leveraged to build a robust and efficient ML model for a 
cough-based diagnosis engine. In case of cough audio, there exists 

i
η
= 1Cm

I unique possible combinations of the resulting m × n feature 
matrix, where n corresponds to the number of total features, ci corre-
sponds to the number of possible values ith feature and m corresponds to 
the number of audio subsegments in the whole audio segment. This 
means that even if we use one feature that can have only 5 possible 
values, then for 10 audio subsegments there still exist 510 possible 
number of value combinations in the resulting 10 1 feature matrix. Thus, 
there is a high possibility that such a huge number of latent features 
would help in identifying the disease quite accurately and promptly. It is 
also well known that AI has the potential to differentiate subtle dis-
tinctions and nuances in the cough that are associated with the unique 
diseases. Hence, it can be exploited as a test medium for the diagnosis of 

diverse respiratory diseases. Several independent studies [67,73,74] 
have backed up this claim and demonstrated that the distinct cough 
latent features can be used for the accurate AI-based diagnosis of the 
respiratory diseases. 

To perform cough detection and preliminary disease diagnosis based 
on cough, we present a robust yet easy to develop AI engine in Fig. 5. The 
major phases of a cough detection/diagnosis framework are data 
acquisition, data preprocessing, feature extraction, and selection of the 
appropriate machine learning models. These phases and their relevant 
characteristics are elaborated in the subsequent sections. The main task 
of the AI engine is to run a cough detection test and analyze whether the 
recorded sound is a cough or not. Further, it should be robust enough to 
detect cough in the presence of background noise. In case of diagnosis, 
the aim for this AI engine is to analyze cough and diagnose the correct 
disease accurately. By delegating most of the processing to the cloud; 
such an AI engine can be installed on portable devices. Thus, making it a 
resourceful screening tool easily accessible to patients for monitoring 
themselves and in some cases, providing preliminary diagnosis in order 
to encourage the patients to seek timely medical assistance. Such 
intelligent diagnostic tools can also aid physicians in better planning and 
providing care, ultimately leading to better outcomes and increased 
patient satisfaction. 

3. Cough types based on duration 

Based on the duration, cough can be broadly classified into three 
categories: acute (less than three weeks), subacute (three to eight weeks), 
and chronic (longer than 8 weeks) [75], as shown in Fig. 6. Other details 
about symptoms and diagnostic methods are mentioned in Table 4. In 
this section, we explain in detail the diseases associated to the 

Fig. 4. Cough types and the associated diseases.  

Table 2 
Features that help human ear to differentiate the voice, generally used for 
clinical diagnosis.  

Feature 
Name 

Attribute Description 

Timbre Harmonics, temporal Multiple frequencies changing 
through time 

Pitch Psycho-acoustical 
(frequency) 

The perception of a high or low sound 

Quality Temporal Sensation received by the ear 
Loudness Amplitude The intensity of a sound 
Duration Period Length of time a pitch, or tone, is 

sounded  
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aforementioned types of coughs, relevant symptoms, and the existing 
medical practices for cough analysis. We also discuss how ML/DL clas-
sifiers can complement the existing state-of-the-art healthcare proced-
ures for timely and accurate diagnosis. 

3.1. Acute cough 

Upper or lower respiratory tract infections and acute exacerbation of 
pre-existing conditions like chronic obstructive pul-monary disease 
(COPD), asthma, and bronchiectasis can cause acute cough. The acute 

Table 3 
List of audio features that can be possibly leveraged for building a scalable and robust ML classifier for cough-based diagnosis engine.  

Sr. 
No. 

Feature Name No.of 
Features 

Type Description 

1 Zero Crossing Rate 1 Temporal The rate at which signal changes its sign during the duration of a particular frame, e.g., positive to 
negative or vice versa. 

2 Energy 1 Temporal The sum of squares of the amplitude of the signal, normalized by its frame length. 
3 Entropy of Energy 1 Temporal Abrupt changes in a sub-frame can be measured from its entropy of energy. 
4 Log Energy 1 Temporal The log energy for every subsegment 
5 Skew 1 Statistical/ 

Temporal 
Measure of the asymmetry of the probability distribution of the data segment 

6 Kurtosis 1 Statistical/ 
Temporal 

Measure of the “tailedness” of the probability distribution of the data segment 

7 Spectral Centroid 1 Statistical/ 
Spectral 

Indicates the center of mass/gravity of the spectrum. Approximately related to timbral “brightness 

8 Spectral Mean 1 Statistical/ 
Spectral 

1st spectral moment 

9 Spectral Variance 1 Statistical/ 
Spectral 

2nd spectral moment 

10 Spectral Skewness 1 Statistical/ 
Spectral 

3rd spectral moment 

11 Spectral Kurtosis 1 Statistical/ 
Spectral 

4th spectral moment 

12 Spectral Spread (SSp) 1 Statistical/ 
Spectral 

Variance of the spectrum around the spectral centroid 

13 Spectral Slope (SSl) 1 Statistical/ 
Spectral 

Rate of decrease of the spectral amplitude towards the high frequencies, calculated using Linear 
Regression 

14 Spectral Crest Factor 1 Spectral Ratio of the maximum spectrum power and its mean 
15 Spectral Bandwidth 1 Spectral Measure of the spectral dispersion 
16 Spectral Flatness 1 Spectral Measure of noisiness in a signal computed by the ratio of the geometric mean and arithmetic mean 

of its energy spectrum 
17 Spectral Entropy 1 Spectral Entropy of the normalized power spectral density of a signal 
18 Spectral Flux 1 Spectral Measure of the rate of change of power spectrum between two successive frames, calculated by the 

Euclidean distance between their normalized spectra 
19 Bispectrum Score (BGS) 1 Spectral Measure of nonlinear interactions in a signal, calculated by its third-order spectrum 
20 Pitch 1 Spectral The fundamental frequency of the audio signal 
21 MaxF 1 Spectral Maximum Frequency 
22 Band Power 1 Spectral Average power in the input signal 
23 Spectral Rolloff 1 Spectral The roll-off frequency below which 85% of the spectrum’s energy is concentrated. 
24 Spectral Turbulence 1 Spectral Measure of variations in the spectral content of a signal 
25 Mel-Spectrogram 20 Spectral Mel-frequency spectrogram coefficients for 20 Mel-bands 
26 MFCCs 13 Spectral Mel Frequency Cepstral Coefficients gives a concise representation of the shape of spectral 

envelope 
27 Delta MFCCs 13 Spectral Delta-MFCC are the first-order derivative of MFCC used to measure speech rate 
28 Delta Delta MFCCs 13 Spectral Delta-Delta-MFCC are the second-order derivative of MFCC used to measure speech acceleration 
29 Chromagram 12 Spectral Measure of spectral energy w.r.t. the 12 pitch classes of western-type music 
30 Chroma Deviation 1 Spectral The standard deviation of the chroma vector containing 12 chroma coefficients. 
31 Constant-Q chromagram 12 Spectral Constant Q transform based Chroma Values 
32 Chroma Energy Normal- ized 

Statistics 
12 Spectral Chroma Energy Normalized variant of Chroma values 

33 Cochleagram 20 Spectral Gamma-tone filter based variant of spectrogram 
34 Linear Predictive Coeffi- cients 

(LPC) 
20 Spectral A compressed representation of the spectral envelope of a signal 

35 Linear Predictive Cepstral 
Coefficients (LPCC) 

20 Spectral Cepstral representation of LPC 

36 Line Spectrum Pairs (LSP) 20 Spectral Direct mathematical representation of LPC coefficients for added filter stability and efficiency 
37 Discrete wavelet trans- form 

(DWT) 
20 Spectral Decomposes a signal into a set of wavelets 

38 Continuous Wavelet Transform 
(CWT) 

20 Spectral Time-frequency representation of a signal by decomposing it into wavelets 

39 Perceptual linear predic- tion 
(PLP) 

20 Spectral Perceptual linear prediction coefficients gives more weight to the perceptually important spectrum 
regions 

40 Formant Frequencies (FF) 4 Spectral Formant frequencies have high energy in the spectrum of a human speech signal 
41 Non-Gaussianity Score (NGS) 1 Spectral NGS gives the measure of deviation from Gaussianity of a signal 
42 Power Spectral Density (PSD) 20 Spectral Measure of signal’s power distribution versus frequency. 
43 Tonnetz 6 Spectral Tonal centroid features (tonnetz) 
44 Spectral Contrast 7 Spectral Measure of difference between the peaks and valleys in the spectrum of a signal 
45 Local Hu Moments 13 Spectral Measure the degree of how the energy is concentrated to the center of energy gravity of local region 

of spectrogram  
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attack of asthma and COPD can be clinically severe and sometimes life- 
threatening.  

i. Upper Respiratory Tract Infections (URTI): URTIs include common 
cold and croup. Common cold can cause upper respiratory tract 
inflammation through various viruses and has a self-limiting course 
of seven to ten days with dry or productive cough. 
• Croup: Croup is usually a viral infection that also causes inflam-

mation of the upper respiratory tract. It presents with abrupt onset 
of barking cough along with the inspiratory stridor and breathing 
difficulty [76,77]. It is a clinical diagnosis (distinct barking 
cough), and viral antigen detection or serology is not recom-
mended to confirm the diagnosis, as it is very expensive. Therefore, 
devising some innovative and cost-effective diagnosis methods by 
leveraging the tools of artificial intelligence can be of great help 
[78].  

ii. Lower Respiratory Tract Infections (LRTI): These infections can be 
caused by a viral or bacterial infection. These infections include 
bronchitis, pneumonia, atypical pneumonia, and lung abscess. The 
infections can involve bronchial tree and lung parenchyma or both.  
• Acute Bronchitis: In acute bronchitis, the main presenting 

complaint of the patients is cough, which is productive with green 
or clear phlegm along with dyspnea and wheeze [79]. The 
involved cough is usually self-resolving within three weeks. Acute 
bronchitis is a diagnosis of exclusion that is made after ruling out 
other respiratory diseases like pneumonia, acute exacerbation of 
COPD, and asthma. However, manual cough assessment can 
sometimes lead to misdetection because of the overlapping audible 
features. 

• Pneumonia: It is the infection of lung parenchyma caused by bac-
teria, viruses, or fungi. Patients present with acute onset of pro-
ductive cough, fever, tachycardia, and increased respiratory rate. 
Patients with symptoms suggestive of pneumonia have blood 
samples and culture drawn out before initiation of empirical an-
tibiotics. Radiological studies can show patchy or a lobar consol-
idation in the lungs with pleural involvement. Pleural fluid, 
sputum, and blood samples are drawn out for biochemical tests 
and culture. Several studies have been carried out to compare the 
accuracy and efficiency of sputum polymerase chain reaction 
(PCR) and culture for the diagnosis of pneumonia [80–82]. They 
showed that sputum PCR is also more sensitive than culture in 
diagnosing community-acquired pneumonia in the hospitalized 
patients. In patients with bacteremia, PCR of blood sample is more 
sensitive than the culture in diagnosing pneumonia [83]. 

• Atypical Pneumonia: Atypical pneumonia presents with extrap-
ulmonary findings in addition to the lung findings. The patient 
presents with low-grade fever, cough mostly dry, dyspnea, wheeze, 
and myalgia. It is usually preceded by upper respiratory symptoms 
like rhinitis, sore throat, headache, and sinus pain [105]. In 

children, the dry repetitive staccato cough is characteristic of 
chlamydial pneumonia.  

• Lung abscess: Abscess is walled off, well-circumscribed collection of 
necrotic tissue and pus. When the abscess develops communication 
with the bronchus, the cough becomes productive [91,92]. 
Radiological tests like chest X-ray and high resolution computed 
tomography (HRCT) are needed to carry out to grasp the extent 
and dimensions of an abscess. However, there is a possibility that 
radiologists may misinterpret diseases because of inexperience or 
human error, leading to a misdiagnosis, i.e., false-negative result 
or false-positive result. 

• COVID-19: Novel virus SARS-CoV-2 presents a wide clinical spec-
trum. It has variable clinical severity ranging from the majority of 
cases presenting with mild self-resolving course to critical fatal 
illness [106]. The common symptoms include cough, myalgia, 
fever, headache, sore throat, shortness of breath, loose stools, chest 
discomfort, and loss of taste and smell sensation [90]. Most of the 
time, viral illness affects the upper respiratory tract, but sometimes 
it can affect the lungs resulting in pneumonia with bilateral 
ground-glass infiltrates [107]. The nucleic acid amplification test 
(NAAT) by reverse transcriptase-polymerase chain reaction 
(RT-PCR) has high sensitivity and specificity for detecting 
SARS-CoV-2. The method employs the detection of two or more 
genomes, including envelope, spike, nucleocapsid, and 
RNA-dependent RNA polymerase [108].  

• Aspiration of the foreign body: Another cause of acute cough is the 
aspiration of a foreign body, which can cause sudden onset of 
cough and it mostly occurs in children. Usually, the patient pre-
sents with a history of choking, followed by classical triad cough, 
wheeze, and decreased breath sounds. A chest radiography is an 
initial test performed [65]. Flexible bronchoscopy is both diag-
nostic and therapeutic. Automated AI-based techniques can make 
the diagnosis of such cough very secure, straightforward, and fast. 

However, there are chances of misdiagnosis with the existing prac-
tices in the image analysis. According to statistics, the misdiagnosis rate 
caused by a human can reach up to 10–30% [109]. Therefore, there is an 
increasing trend of amalgamation of CAD systems to provide aid and 
helpful tools for the health professionals for accurate and efficacious 
diagnosis [35]. Machine learning and deep learning have been a vibrant 
area in AI for the promising results in the healthcare domain. These 
methods are considered as a powerful tool in the automatic detection of 
the disease from the datasets constitute of CT scan [110], X-Ray images 
[111], and respiratory sound data [112]. Thus, AI has the potential to 
provide assistance to the physicians by deploying rapid and low cost, yet 
accurate screening tools. 

3.2. Sub-acute cough 

Sub-acute cough lasts for three to eight weeks. It is commonly due to 

Fig. 5. AI-based cough detection/diagnosis process.  
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post-infection and exacerbation of asthma, COPD, and upper airway 
cough syndrome [23]. Post-infection cough mostly occurs after viral 
infection and usually resolves within eight weeks. It occurs due to the 
increased sensitivity of the larynx. Mycoplasma pneumonia and 
pertussis can also result in post-infection cough [113].  

• Pertussis: It is characterized into three clinical stages: (i) catarrhal, 
(ii) paroxysmal, and (iii) convalescence. The catarrhal stage has 
symptoms similar to the common cold. The paroxysmal stage is 
detected by bouts of whooping cough with post-tussive emesis and 
the cough is productive [94]. During the convalescent stage, the 
cough gradually recovers, and it can last from several weeks to 
months. There can be acute episodes of cough during this phase due 
to the superimposed URTIs [114]. The gold standard test for diag-
nosis of pertussis is culture. Nowadays, PCR has replaced culture as a 
test of choice [13]. However, an automated ML-based cough detec-
tion method can expedite the accurate and reliable diagnosis. 

3.3. Chronic cough 

Chronic cough lasts more than eight weeks. The causes of chronic 
cough include clinically severe diseases like lung cancer and less severe 
clinical causes like upper airway cough syndrome (UACS), cough variant 
asthma (CVA), bronchitis, smoker’s cough, idiopathic pulmonary 
fibrosis, cough due to medications, habitual or psychogenic cough, 
gastroesophageal reflux disease (GERD), and obstructive sleep apnea 
[56]. A study done by the American College of Chest Physicians (ACCP) 
highlighted that upper airway cough syndrome, cough variant asthma, 
and GERD are the most common causes of chronic cough [115]. Phy-
sicians need to rule out the triad of these diseases in patients com-
plaining of chronic cough [115]. CNN based imaging and cough analysis 
methods can assist the physicians for timely and accurate root causes of 
chronic cough.  

• Asthma: It is a chronic hypersensitivity to allergens, dust, animal 
dander, and exercise. Its onset is mainly at an early age. The cough 
variant asthma patient presents with dry cough accompanied by 
breathlessness and a characteristic whistling sound called wheeze, 
which occurs in expiration. The symptoms occur characteristically at 
night. It is also associated with other atopic symptoms like eczema, 
allergic rhinitis, and food allergies. It is diagnosed by spirometry on 
which the FEV1/FVC ratio is less than 70%. Non-asthmatic eosino-
philic bronchitis (NAEB) presents with similar clinical symptoms, but 
the patient has a productive cough with sputum eosinophilia.  

• Gastroesophageal Reflux Disease: The most common non-respiratory 
cause of chronic cough is gastroesophageal reflux disease (GERD). 
It can cause cough due to regurgitation and aspiration of gastric se-
cretions resulting in irritation of vocal cord. The cough is non- 
productive, nocturnal, and accompanied by hoarseness of voice. 
24-hour esophageal-PH monitoring can have high sensitivity and 
specificity in diagnosing GERD [64].  

• Upper Airway Cough Syndrome: UACS presents with a dry cough, 
itching, sensation of dripping in the throat, sore throat, nasal stuff-
iness, nasal blockade, and rhinitis. It is a clinical diagnosis and in 
patients with atypical symptoms, diagnosis is made with an 
improvement of symptoms after prescribing first-generation oral 
anti-histamines [76].  

• Chronic Obstructive Pulmonary Disease: Smoking is a lung irritant that 
can cause a cascade of inflammatory reaction in the lung paren-
chyma. Heavy chronic smokers can develop a peculiar smoker’s 
cough. It is chronic in onset and is continuous. Smoking and other 
occupational exposures can result in COPD. It includes both chronic 
bronchitis and emphysema. It presents with a productive cough 
containing small to moderate amount of mucoid phlegm, breathless 
on exertion, chest tightness, and expiratory wheeze. It is diagnosed 
by an in-office spirometry test. As per GOLD guidelines, an FEV1/ 
FVC ratio of less than 0.7 after bronchodilator confirms the diagnosis 
of COPD [116]. Hence, there can be a chance of misdiagnosis of 
COPD, therefore, some additional AI-based methods are crucial for 
an expedited and accurate diagnosis to aid the state-of-the-art GOLD 
standards.  

• Tuberculosis: of the important diseases associated with the chronic 
cough is tuberculosis (TB). It has symptoms such as productive 
cough, weight loss, and low-grade fever for more than two weeks. 
State-of-the-art radiological investigations are carried out in the 
patients, along with sputum smear microscopy and culture. How-
ever, TB patients have very distinct cough types and by exploiting the 
latent features for the training of AI-based cough detection models, 
the diagnosis and treatment of this disease can be significantly 
improved.  

• Congestive cardiac failure: It can cause cough due to pulmonary 
congestion and edema. It is associated with dyspnea, orthopnea, 
swelling in the legs, and fatigue. The cough in congestive heart 
failure has characteristic pink straw-colored sputum. It is diagnosed 

Fig. 6. Classification of cough according to the duration.  
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by cardiac evaluation and imaging such as echocardiography. By 
leveraging the expertise of health professionals and curated labeled 
databases related to imaging and cough, detection of congestive 
heart failure can be performed in significantly less time.  

• Idiopathic pulmonary fibrosis: It is a multi-factorial disease, that can be 
caused due to the occupational exposure, smoking, or use of certain 
drugs. Pulmonary manifestations include cough, breathlessness, and 
hemoptysis. The cough is non-productive, dry, and continuous. Pa-
tients have a continuous urge to cough that is not alleviated by 
coughing. Patients may seldom have a small amount of clear sputum 
likely due to traction of bronchi [117]. An advanced imaging study 
like HRCT, lung biopsy, respiratory studies are carried out to confirm 
the diagnosis [101]. Hence, it is possible to focus on the AI-based 
technology for general image preprocessing procedures applied in 
chest radiography for disease diagnosis along with ML/DL-based 
cough detection methods.  

• Psychogenic cough: Psychogenic cough is non-productive, barking and 
honking in nature, and is absent at night. As per the ACCP guidelines, 
the diagnosis of somatic cough should not be made only on clinical 
characteristics of the cough. Therefore, there is a dire need to exploit 
and enhance the existing databases for such diseases and train the ML 
models for better detection based on the latent cough features.  

• Cystic fibrosis: Patients suffering from cystic fibrosis have productive 
cough (that has thick and dense sputum), wheezing, chest tightness, 
night-time awakening, and gastrointestinal symptoms of malab-
sorption. Newborn screening is done for cystic fibrosis, followed by a 
sweat chloride test to confirm the diagnosis.  

• Lung cancer: Cough is mainly present in centrally located lung cancer 
like small cell and squamous cell carcinoma [118]. Productive cough 
with large amounts of mucoid sputum is characteristic of mucinous 
adeno carcinoma.  

• Cough caused by medications: Finally, another cause of chronic cough 
is different medications that can cause cough. When the cough is 

Table 4 
Clinical picture and diagnostic approach for different types of cough.  

Type of 
Cough 

Reference Disease Clinical Picture Diagnosis 

Acute 
cough 

[84,85] URTI Nasal discharge, stuffiness, post nasal drip, sore throat Mainly a clinical diagnosis. Nasopharangeal swab is done for 
antigen detection by ELISA, IFA 

[77] Croup Occurs mostly in children. Presents with catarrhal symptoms, 
barking cough, stridor and breathing difficulty 

Diagnosed clinically 

[86,87] Acute bronchitis Cough (dry/productive) can be preceded by nasal congestion, 
flu, sore throat, and headache. Rhonchi and wheeze may be 
heard on chest auscultation 

Clinical diagnosis, Chest X-ray is usually nor- mal or may show 
subtle changes like thickening bronchial walls in lower lung 
zones 

[88,89] Atypical 
Pneumonia 

Prodromal symptoms of malaise, low-grade fever, myalgia, 
sore throat, flu-like symptoms. It is followed by a dry or 
productive cough, accompanied by pleuritic chest pain and 
dyspnea 

Clinical diagnosis, molecular tests like nucleic acid amplification 
and PCR are reserved for clinically severe diseases with 
complications like hemolysis and mucocutaneous manifestations 

[90] COVID-19 Present with wide clinical symptoms including cough, 
myalgia, fever, headache, sore throat, shortness of breath, 
loose stools, chest discom- fort, loss of taste, and smell 
sensation 

The nucleic acid amplification test (NAAT) by reverse 
transcriptase-polymerase chain reaction (RT-PCR) has high 
sensitivity and specificity for detecting SARS-CoV-2 

[83] Pneumonia Productive cough, ‘rusty’ colored sputum in streptococcus 
pneumonia, fever, tachycardia, tachypnea, and chest pain. 
Bronchial breath sounds, tactile and vocal fremitus on chest 
aus- cultation 

Chest Xray, HRCT, sputum microscopy, PCR and blood culture 

[91–93] Lung abscess Clinical picture similar to pneumnonia, cough initially dry but 
productive when abscess devel- ops communication with 
bronchus 

Chest X ray, HRCT shows walled-off abscess with air-fluid level, 
Brochoscopy for microbiol- gical testing and biopsy 

Subacute 
cough 

[94,95] Pertussis Catarrhal stage followed by bouts of productive cough with 
post-tussive emesis. 

PCR and culture of sputum samples on Bordet- Gengou and 
Regan-Lowe agar 

Chronic 
cough 

[96] Asthma Nocturnal cough, breathlessness, wheezing and chest 
tightness. Symptoms triggered by exposure to allergen 

Spirometry: FEV1/FVC ratio< 70%, reversible by inhalation of 
beta agonists. Reversal and improvement of symptoms by 
inhalation of Beta 2 agonists. 

[64] GERD Dyspepsia, heartburn, metallic taste, cough, hoarseness of 
voice 

24 h esophageal ph monitoring 

[76] UACS Dry cough, itching, post-nasal drip, sore throat, nasal 
stuffiness, and rhinitis 

Clinical diagnosis 

[66] COPD Productive cough, dyspnea, common in smokers, pink puffers, 
blue bloaters 

Spirometry: FEV1/FVC ratio< 70%, not re- versible by 
bronchodilators. Chest X ray. 

[97–99] Tuberculosis Productive cough, hemoptysis, night sweats, fa- tigue, weight 
lost, low-grade fever 

Microscopy and culture from sputum smear, BAL washing, 
pleural fluid. NAA test on spu- tum. Chest Xray and HRCT are 
imaging studies of choice 

[100] Congestive 
cardiac failure 

Dyspnea on exertion and in later stages at rest, orthopnea, 
swelling in legs, cough with straw- colored sputum, basal 
crepitus on ascultatation at early stages 

Echocardiography, chest X ray, BNP levels, car- diac stress test 

[101] Idiopathic 
pulmonary 
fibrosis 

Bouts of non-productive cough, dyspnea. Presents with 
systemic symptoms like uveitis, blurred vision, artharalgia, 
dyspepsia, dysphagia, rash. 

Chest X-ray, HRCT, lung biosy and respiratory studies are carried 
out. 

[102] Psychogenic 
cough 

Repetitive cough in the absence of clinical dis- ease. Diagnosed after clinic and psychiatric evalua- tion. 

[103] Cystic fibrosis Genetic disorder with early childhood onset. Productive cough 
with wheeze, chest tightness, steatorrhea, poor weight gain. 

New-born screening followed by sweat chrolide test. Nasal 
potential difference test is not done routinely. 

[104] Lung cancer Cough, hemoptysis, weight lost, and fatigue Sputum cytology, chest X-ray, HRCT, bron- choscopy and lung 
biopsy. Lumph node biopsy, screening for metastatic sites. 

[64] Cough due to 
medications 

Dry or productive cough Improvement in symptoms in one to four weeks after 
discontinuation of medication suspected of resulting in cough.  
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caused by angiotensin-converting enzyme (ACE) inhibitors or sita-
gliptin, the medication is discontinued for four weeks. If the cough 
improves within one to four weeks, the likely cause of cough is 
medication [64]. 

Given the distinct characteristic, symptoms, and existing medical 
diagnosis for the respiratory diseases mentioned above, and with limited 
provided resources in terms of medical professionals and testing 
equipment, there is a crucial need to leverage the development in 
Artificial Intelligence domain. Despite being in its infancy, the concept 
of using CAD and AI techniques is developing very fast. Machine 
learning and deep learning methods can be successfully used as tools to 
proactively aid healthcare professionals for better, fast, and cost- 
effective detection and diagnosis. In the subsequent sections, we have 
discussed the ML and DL models trained using cough samples that have 
been used in literature for the detection and diagnosis of the many 
above-mentioned respiratory conditions. 

4. Data acquisition for the training of AI-based cough detection/ 
diagnosis framework 

The training of an accurate, reliable, and comprehensive cough 
detection/diagnosis model requires the collection of repre-sentative and 
relevant data. Data collection step is the first and foremost step in the 
ML/DL classifier development process, as shown in Fig. 5. This section 
provides the details about data collection devices, the characteristics of 
patients that contribute towards the dataset creation, and the custom-
ized apps/websites developed for the cough data acquisition. 

4.1. Data collection 

For the development of an effective ML/DL model, the training data 
must be representative, properly tagged, immune to the noise, and 
should include certain characteristics. There are mainly three ap-
proaches for data acquisition in the literature: data discovery, data 
augmentation, and data generation [119]. Data discovery phase in-
cludes searching for the new relevant datasets and it is recommended to 
make the datasets available online. Data augmentation complements the 
data discovery phase where the discovered datasets are not sufficient 
and require additional data from the external sources. Whereas the data 
generation is required when the external dataset are scarce or unavai-
lable, however, there is a possibility of crowdsourcing and creating 
synthetic dataset. 

Data collection comprises three major steps: data acquisition, data 
labeling, and improvement of the existing data. Data collection in the 
healthcare domain is a major bottleneck as it requires the continuous 
assistance from the trained medical professionals and consent from the 
patients to collect the data while they are undergoing some medical 
ailment. In the literature, cough datasets are collected from an extensive 
range of patients suffering from diseases such as pertussis, pneumonia, 
bronchitis, asthma, COPD, and COVID-19, to name a few. Fig. 7 enlists 
all the diseases which contribute to the data acquisition process in the 
articles that are included in this survey. In most of the studies, for the 
training of AI-based detection and diagnosis models, the cough acoustic 
data is collected from a variety of different diseases, i.e., Asthma, COPD, 
bronchiectasis, lung-cancer, pneumonia etc. [31,120–124], while in 
some papers such as [43,125–127] the cough dataset contain the sam-
ples from only one disease, i.e., COVID-19 patient samples. From Fig. 7, 
it is evident that asthma, pneumonia, COPD, pertussis, bronchiectasis 
are the most contributing diseases for the training of ML/DL classifiers. 
The figure is also depicting the fact that the dataset are collected from 
mostly asthma patients (30 papers) and in 19 articles ML models are 
trained based on dataset collected from the COPD patients. Recently, 
due to the emergence of SARS-CoV-2 disease, there is an increasing 
trend of diagnosing the disease using cough samples of COVID-19 pa-
tients with the help of ML/DL frameworks. This is because cough is 

noticed as one of the eminent features in the diagnosis of the underlying 
disease and several studies have shown promising disease predictions 
with high accuracy [32,39,40]. 

4.2. Dataset demographics 

Cough dataset are collected from the patients all around the world, 
including Bangladesh [128], India [40], South Africa [43], US [129], 
China [130,131], and Brazil [43] etc. The studies consider the fact that 
training of the ML models requires the dataset to be truly representative 
and inclusive. The database is generally collected from the patients in 
three environmental settings, i.e., hospitals, lab setting, and normal 
routine with varying levels of noise environment. Therefore, the data 
contain cough of all age groups ranging from infants of few months old 
to elderly patients of more than 60 years old [132]. The databases 
consist of three single classes; voluntary coughs, artifact and speech, and 
simulating the real working environment of system. However, the focus 
of most of the included studies in this survey involve children to teenage 
patients while some studies solely collected cough dataset from the 
elderly patients. Immense variation in the dataset size is observed 
among studies ranging from 4 patients [133,134] to the crowdsourced 
data of 7000 individuals [39], and in one case more than 20,000 samples 
[135], more details about sample size is reported in Tables 6–8 For the 
evaluation of automated ML detection/diagnosis algorithms, some 
studies also collected the cough samples from healthy volunteers 
including both males and females [26,136–140]. The reason for the 
inclusion of normal/healthy cough is to evaluate the ML model if it is 
trained enough to classify normal cough from the unhealthy cough 
produced by the patients. On one hand, the study that has the smaller 
datasets exploits the domain knowledge and transfer-learning to achieve 
the meaningful results [32]. Whereas, on the other hand, larger datasets 
can be useful for the training of deep learning models that can generate 
the features automatically, making feature engineering task easier. 

4.3. Open source databases 

Despite of the escalated trend of using cough signals as a diagnostic 
tool for the respiratory conditions using AI techniques, the number of 
open source and validated cough dataset is limited. The outbreak of 
SARS-CoV-2 pandemic has put a tremendous strain on the healthcare 
systems, researcher from interdisciplinary domains got motivated to 
contribute by proposing efficient and cost-effective solutions. To help 
the community for developing the robust ML models, enormous amount 
of COVID-19 related data is required. Therefore, the researchers are 
motivated to collect the cough data and make it public to help the 
community in developing rigorous classifiers for the timely and expe-
dited disease diagnosis. In this subsection, we list the open-access cough 
dataset:  

i. The COUGHVID dataset is the largest expert-labeled cough 
datasets in existence, comprised of more than 20,000 crowd-
sourced cough recordings, which includes a variety of de-
mographic diversity [135]. The team collected the dataset, 
filtered it, and then labeled more than 2000 recordings with the 
help of the expert pulmonologists. The database can be exploited 
for a numerous cough acoustic classification tasks.  

ii. A public database Corswara comprised of approximately 1000 
samples of respiratory sounds such as, cough, breath, and voice 
[141]. By recording nine different sounds from each patient, this 
cough repository helps to extract the multi-dimensional spectral 
and temporal features. Its aim is to complement the PCR-based 
COVID-19 diagnosis methods. The sound samples are collected 
via worldwide crowdsourcing using a website application. The 
database is still in progress with the objective of better detection 
and quantification of the disease bio-markers with the help of 
sound acoustics. 
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iii. Cohen-McFarlane and team introduced a database named as 
NoCoCoDa, where the authors collected the cough events 
through the public media interviews with COVID-19 patients 
[142]. The data repository has 73 cough events and it is created 
by the manual segmentation, extraction, and annotation of data. 
They also investigated the severe cases of COVID- 19, where the 
cough can be productive, as mostly the patients have dry cough. It 
is worth mentioning that this database is not public, however, it 
can be available on request.  

iv. Another open source yet limited cough repository is developed by 
the independent AI researchers through website known as Virufy 
[143]. The dataset consists of only 16 patients (10 male and 6 
female) with 7 COVID-19 PCR test positives while the remaining 
9 are negative test patients. The biomarkers of the collected 
dataset are temperature, cough, shortness of breath, and glucose 
level. 

In addition to the aforementioned public cough databases, Shuja 
et al. [144] provided extensive details about the open-access medical 
images, textual, and speech datasets for COVID-19. To ease the access of 
the scholarly articles, Allen Institute for AI created the COVID-19 Open 
Research Dataset (CORD-19) [145]. Despite of all the success in the data 
collection, it is evident that further efforts are still required to make the 
data collection process more systematic and accessible for the training of 
robust models. In addition, for the results to be reproducible the dataset 
should be public, that can assist in the development of vigorous ML/DL 
algorithms for the accurate disease diagnosis. 

4.4. Data collecting devices and sensor placement 

Smart healthcare sensors with integrated circuit, optimal computa-
tional capability, and prolonged battery life are essentially required to 
acquire the data for the accurate AI-based predictions. A variety of data 
acquisition devices are used in the literature ranging from simple voice 
recorders [146] to a high-tech customized robot [147] for the cough 
collection and the associated disease diagnosis. These sensors have the 
ability to sense different environmental parameters and detect any 
changes within the proximity of the patient. We review some of the most 
commonly used cough data collection devices in Table 5 and investigate 
their efficacy in terms of cost, ease of use, noise sensitivity, energy ef-
ficiency, and Line-of-Sight (LOS) limit. Each wearable sensor or portable 
device has its own certain strengths and shortcomings. For instance, 
MP3 recorders are generally inexpensive, power efficient, and can 
tolerate high sound pressure levels, but are sensitive to high frequency 
and not immune to background noise [146]. Contrary to that, 

smartphones have the ability to capture continuous data, provide the 
dynamics of the real-life patterns, immunity to the background noise, 
readily available, user-friendly, and patient can place them within the 
close proximity. However, when the Signal to Noise Ratio (SNR) is low, 
the smartphone-based systems deactivate. Other challenges include the 
limited battery life and compatibility issues [148]. 

Cough collection using microphones and voice recorders is one of the 
most common practices in the literature [22,122,130,131,133,136, 
149–160]. The microphone can be placed near to the patient’s chest for 
several hours [150]. In [122] to suppress the surrounding noise while 
placing the microphone on the chest, the authors covered the micro-
phone with a plastic foam membrane. The microphone can be attached 
to the shirt collar [158,161] in home/office setting or lapel [155,156, 
162] for 24 h while performing the daily routine tasks. Due to the 
technological advancements and ease of access, smartphones have 
become ubiquitous. Therefore, the researchers have also exploited the 
smartphone data recording feature to collect the cough data in [29,30, 
32,120,121,126,129,163–171]. Smartphones have noise robustness for 
up to − 15 dB and can easily be placed in the patient’s pocket or the 
handbag for the data monitoring. However, as discussed earlier, the 
main challenge of using the smartphones for the data collection is 
limited battery life, the authors in [164] devise real-time cough detec-
tion algorithm that is power-efficient. Smartphone-based cough detec-
tion frameworks have the potential to accurately detect cough from the 
passively collected patient data and reduce the load of labeling the 
coughs manually. However, to make it easier for the patients to monitor 
their respiratory conditions and report about any medical anomaly 
accurately to the physicians and clinicians, further research is required 
in this domain. 

Using microphone is also a common practice to acquire cough data 
either in hospital, lab or normal settings [134,159,172–176]. A high 
fidelity computerized data acquisition system which is comprised of low 
noise microphone, laptop, professional quality pre-amplifier, and A/D 
converter unit, is used for the sound signal acquisition in [177–180]. 
Other data collecting sensors include the FDA approved cough moni-
toring device VitaloJAK [123], smartwatch [169,181], piezo sensor 
[137], public telephone hotline [182], hull automatic cough counter 
(HACC) [183], cough recording robot [147], microwave doppler sensor 
[140], AioCare spirometer [74], YouTube [184], cough detection cam-
era [41], and stethoscopes [185]. 

Regardless of the devices used, the duration of the collected data 
varies from a few hours to a couple of months. The authors in [179] 
acquired the data by attaching the microphone near trachea for 4–6 h 
while Perna et al. [175] collected the audio cough sounds using a remote 
microphone for 90 days. Placement of the data acquisition devices and 

Fig. 7. Pulmonary diseases and other medical conditions associated with collected data in different studies.  

A. Ijaz et al.                                                                                                                                                                                                                                      



Informatics in Medicine Unlocked 29 (2022) 100832

13

their distance to the patients are also a crucial consideration aspects for 
the data collection with minimal background noise. In [154] the 
microphone is attached to either the thorax of subjects or trachea while 
sitting or standing in the presence of ambient noise. The distance be-
tween the microphone and patients varied from 40 cm to 70 cm due to 
the inconsistent patient movements in the hospital [173,174,177,180, 
186]. However, in some circumstances, wearable sensors are not suit-
able for long-term use because of their weight and the requirement of 
keeping the sensor in close proximity to the patients, that hinders the 
convenient and continuous real-time data acquisition. By considering all 
these aspects, advanced and specialized data collecting devices need to 
be designed to ensure the convenience of patients and that can collect 
the data with minimal background noise for the accurate classification. 

4.5. Customized developed apps 

The data-driven AI medical frameworks have shown great potential 
to become a powerful candidate to design, optimize, and adapt the state- 
of-the-art disease detection and diagnosis practices. These algorithms 
lead to a new paradigm with an ability to improve the healthcare and 
making sickcare treatments patient-specific. Nevertheless, machine 
learning models and neural networks, for the classification and pattern 
recognition purpose require sufficient amount of training data. Recently, 
the idea to design and develop accessible, easy to use, cost-effective, 
end-to-end customized applications and making their availability at 
patient’s disposal, is gaining significant research interest. Smartphones 
being an ubiquitous device can be a prospectively effective source to 
capture the behaviors and dynamics of the people’s real-life patterns. 
Smartphones allow researchers to collect active data in terms of self- 

reporting and passive data by monitoring the incidental or unconven-
tional continuous contextual data. These distinctive features enable the 
opportunity to run the ML approaches within the smartphone devices. 
By downloading such specialized applications the subjects/patients are 
able to monitor the biomarkers and provide data, thus helping in 
building a corpus of the acoustic data. This becomes the motivation for 
the researchers working towards anytime, anywhere apps for the cough 
collection, detection or diagnosis. Fig. 8 summarizes the customized 
apps/websites for the cough data acquisition and the preliminary dis-
ease diagnosis. This subsection provides the details of these applications 
along with the relevant studies.  

• Mobicough: A cost-effective mobile application is developed for the 
real-time detection and monitoring of the cough in [187]. For the 
data collection, an audio logging program is developed for the 
smartphones. Patients were asked to wear the earphone speakers 
while performing their routine works during 3–6 h of the day. After 
the data collection, it further underwent four stages: data 
pre-processing, segmentation, feature extraction, and classification for 
prediction. Features such as Mel Frequency Cepstral Coefficients 
(MFCC), Zero Crossing Rate (ZCR), and entropy are then extracted 
and, later, based on these features, Gaussian Mixture Model (GMM) 
is trained for the modeling of cough sounds. For the modeling of 
background sounds such as noise and speech, Universal Background 
model (UBM) is employed. Results showed that the system is capable 
of cough detection using smartphone app, however, the authors have 
not compared the performance of the developed app with any 
commercially available cough detectors. 

Table 5 
A list of cough data acquisition devices and their attributes. 
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• Healthmode: A smartphone customized application is designed for the 
continuous cough data collection and detection anal-ysis [188]. To 
classify the spectrograms and for the recognition of cough in the 
recordings, the authors used Convolutional Neural Network (CNN). 
The data is collected by using the phone’s internal microphone. After 
the recording, the cough data is sent to the secure cloud server for 
further analysis. Finally, the performance of the devised technique is 
compared with the six commercially available cough monitors, 
namely, Lifeshirt, VitaloJak, Leicester Cough Monitor (LCM), Cough 
COUNT, HACC, and LR100 Cough Monitor. The results in terms of 
sensitivity (90%), specificity (99.5%), and inter-rater agreement 
have showed comparable performance with the existing commercial 
solutions. In addition, while developing the app, the authors ensured 
that the privacy of the data remains intact, a feature that is of 
paramount importance.  

• COVID-19 sounds: Researchers in [39] has developed a 
cross-platform application for the collection of crowdsourced data-
base of more than 10,000 cough samples from around 7000 unique 
users till date. Out of this large dataset, 235 subjects are diagnosed 

with COVID-19, roughly comprised of 3.36% of the entire dataset. 
The authors assert that it is possible to classify COVID-19 patients 
form the healthy users, and the cough of COVID-19 patients from 
that of asthma cough with appreciable performance, even by 
leveraging simple ML models such as LR and SVM trained with the 
handcrafted features that are extracted using transfer learning. The 
proposed model is evaluated by using a subset of the datasets (141 
cough and breathing samples). The models achieved an AUC (Area 
Under the Curve) of above 80% for all the tasks. Another distinctive 
feature of this custom made mobile application is that it reminds the 
users to provide the samples after every couple of days. However, 
this dataset is not yet open source, therefore, it cannot be used to 
train the ML and DL models for the sake of reproducibility of the 
results.  

• AI4COVID-19: An application to capture the coughs of the patients 
suffering from bronchitis, pertussis, COVID-19 was developed in 
[32]. The authors investigated the distinctness of pathomorpho-
logical alterations in the respiratory system caused by SARS-CoV-2 
infection when compared to the other respiratory conditions. In 

Table 6 
Overview of related work on cough detection algorithms.  

Author Best Performing AI 
technique 

Disease Diagnosed Sample size Accuracy Sensitivity Specificity 

Drugman et al., 2012 
[154] 

ANN Cystic Fibrosis 32 – 91% 95% 

Swarnkar et al., 2013 
[179] 

Neural Network Infective lung disease, pulmonary edema, COPD 3 98% 93.44% 94.52% 

Liu et al., 2014 [131] DNN Pneumonia, bronchial asthma, COPD 20 – 90.1% 88.6% 
Sterling et al., 2014 [156] HMM Asthma 29 – 85.7% – 
Drugman et al., 2014 

[155] 
ANN Cough 2338 

samples 
– 91% 95% 

Amoh et al., 2015 [137] CNN Healthy cough 14 – 95.1% 99.5% 
Wang et al., 2015 [130] CNN Pneumonia, bronchial asthma, COPD 26 98.59% 98.17 – 
Amrulloh et al., 2015 

[180] 
ANN Pneumonia, rhinopharyngitis, Pulmonary hypertension, 

bronchiectasis, bronchitis 
14 – 93% 98% 

Ferdousi et al., 2015 
[128] 

Bayesian Classifier Cough 1027 
samples 

86.31% 85.22% 87.37% 

Alvarez et al., 2016 [163] k-NN Cough – – 94.17% 92.16% 
Amoh et al., 2016 [138] CNN Healthy cough 14 87.6% 82% 93.2% 
Pham et al., 2016 [187] GMM-UBM Pneumonia, pharyngitis 10 – 91% – 
Amrulloh et al., 2016 

[186] 
Fuzzy c-mean clustering Dry and productive cough 39 76% 77% 75% 

Rocha et al., 2017 [185] LR COPD, congestive heart failure 59 – 92.3% 84.7% 
You et al., 2017 [158] SVM Pneumonia, bronchial asthma, COPD 18 81.5% 78.5% 84.5% 
Alvarez et al., 2018 [167] k-NN Cough – – 92% – 
Alvarez et al., 2018 [120] SVM Asthma, COPD, bronchiectasis 13 – 92.71% 88.58% 
Alvarez et al., 2018 [166] k-NN Asthma, COPD, bronchiectasis 13 95.28% 88.42% 96.8% 
Barcelo et al., 2018 [164] k-NN Asthma, COPD, bronchiectasis – 95.07%   
Barcelo et al., 2018 [121] k-NN Asthma, COPD, bronchiectasis 13 – 88.94 98.64 
Klco et al., 2018 [122] ONN Asthma, COPD, bronchitis, lung- cancer, pneumonia – – 96.8% 98.4% 
Kadambi et al., 2018 

[123] 
DNN Chronic cough, COPD, asthma, lung cancer 9 92.3% 97.6% 93.7% 

Miranda et al., 2019 [73] CNN Cough – 91.2% – – 
Teyhouee et al., 2019 

[211] 
HMM Cough – 78% 89% 74% 

Khomsay et al., 2019 
[159] 

DL Productive cough 8 96.88%   

Kvapilova et al., 2019 
[188] 

CNN Cough 20 – 90 99.5 

Rahman et al., 2019 
[169] 

RF Asthma, COPD 131 – 94.1 – 

Barata et al., 2019 [212] CNN Cough 43 90.9% 91.7% 90.1% 
Vhaduri et al., 2020 [139] RF Cough 25 96% – – 
Drugman et al., 2020 

[146] 
GMM Mucoviscidosis – – 95.2% – 

Vatanparvar et al., 2020 
[213] 

GMM-UBM Asthma, COPD 131 84.89 72.17 97.61 

Chuma et al., 2020 [140] CNN Cough 10 86.5% – – 
Solinski et al., 2020 [74] ANN Asthma, COPD – 91% 86% 91% 
Chen et al., 2021 [214] SVM Cough 670 94.9% 97.1% – 
Lee et al., 2021 [41] CNN Cough 200 events 96% 90% – 
Xu et al., 2021 [215] CNN & MobileNet Asthma, COPD 200 events 94.9% 91.2% –  
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Table 7 
Summary of the literature on cough diagnosis algorithms.  

Author Best AI Tech Disease Diagnose Sample size Accuracy Sensitivity Specificity 

Swarnkar et al., 
2013 [178] 

Logistic Re- 
gression 

Asthma, pneumonia, bronchitis, 
rhino- pharyngitis 

46 – 72.7% 79% 

Parker et al., 2013 
[184] 

k-NN Croup, pertussis 47 – 75% 100% 

Abeyratne et al., 
2013 [174] 

Logistic Re- 
gression 

Pneumonia 91 94% 93% 90.5% 

Koshaish et al., 
2014 [134] 

Logistic Re- 
gression 

Pneumonia 91 – 94% 96% 

Amrulloh et al., 
2015 [26] 

ANN Asthma, pneumonia 18 94.4% 88.9% 100% 

Schroder et al., 
2016 [182] 

GMM Dry and productive cough 514 events Dry cough: 33% Dry cough: 91% Dry cough: 15% 
– Prod cough: 6% Prod cough: 49% 

Sharan et al., 2017 
[28] 

SVM Croup 1364 91.21% 88.37% 91.59% 

Windmon et al., 
2018 [29] 

RF COPD, congestive heart failure 36 78.5% 82% 75% 

Sharan et al., 2018 
[168] 

SVM Pneumonia, asthma/RAD, 
bronchiolitis, croup, URTI 

479 86.09% 92.31% 85.28% 

Botha et el. 2018 
[216] 

Logistic Re- 
gression 

Tuberculosis 38 82% 95% 72% 

Hee et al., 2019 
[30] 

GMM- UBM Asthma 176 91% 82.81% 84.76% 

Porter et al., 2019 
[31] 

Neural Net- 
work 

Croup, pneumonia, asthma, LRTD, 
bronchiolitis 

585 Asthma:97% Asthma: 91% Asthma: 
LRTD:83, 82% LRTD: LRTD: 
Bronchiolitis:84, 81% Bronchiolitis: Bronchiolitis –: 

Agbley et al., 2020 
[170] 

CNN COVID-19 COUGHVID Cough:80% Cough: 82.6% Cough:78.38% 
– COVID-19: 43% COVID-19: 81% 
– Symptomatic:69% Symptomatic:63% 
– Healthy: 51% Healthy 80% 

Laguarta et al., 
2020 [40] 

CNN COVID-19, alzheimer 5320 98.5% 98.5% 94.2% 

Bansal et al., 2020 
[124] 

CNN Dry cough, wet cough, croup, 
pertussis and bron- chitis, astma, 
COPD, COVID-19 

501 70.58% 80.95% 64% 

Pahar et al., 2020 
[43] 

LSTM COVID-19, asthma, bronchitis 1192 92.91% 91% 96% 

Dunne et al., 2020 
[127] 

CNN COVID-19 749 97.5% – – 

Hassan et al., 
2020 [125] 

LSTM COVID-19 80 Breathing: 98.2% Cough: 98% Cough: 96% 
Cough: 97% 
Voice:88.2% 

Danda et al., 2020 
[126] 

RF COVID-19 3642 Cough:94–96% Cough:94% – 
Sneeze:92–93% Sneeze:92% – 
Running Nose: 
95–96% 

Running Nose: 95% – 

Brown et al., 2020 
[39] 

LR COVID-19, asthma 6613 Covid+/Covid-: 69%   
With cough: 72% –  
Covid+/asthma 
cough: 69% 

–  

Balamurali et al., 
2020 [171] 

GMM- UBM Asthma 2362 Asthma: 95% Overall: 95.6% Overall: 95% 
Healthy: 89.9% – – 

Bagad et al., 2020 
[217] 

CNN COVID-19 3621 – 90% 31% 

Pal et al., 2020 
[218] 

DNN COVID-19, asthma, bronchitis 150 Covid+: 96.81% COVID-19+: 91.39% COVID-19+: 97.49% 
Covid-: 96.81% COVID-19-: 89.41% COVID-19-: 98.64% 
Bronchitis: 93.46% Bronchitis: 88.45% Bronchitis: 98.08% 
Asthma: 93.34% Asthma: 94.41% Asthma: 93.10% 

Mouawad et al., 
2021 [193] 

XGBoost COVID-19 1927 97% 65% – 
99% 70% – 

Swarnkar et al., 
2021 [219] 

Logistic Re- 
gression 

Croup, pneumonia 224 Croup:85, 82% Croup: Croup: 
Pneumonia: Pneumonia:87, 85% Pneumonia: 
Breathing 
Index:76.67% 

Breathing Index: 
69.56% 

Breathing Index: 
81.08% 

BI + cough: 95% BI + cough: 91.3% BI + cough: 97.3 
Nessiem et al., 

2021 [220] 
CNN COVID-19, asthma 1427 67.7% 77.6% – 

Manshouri et al., 
2021 [221] 

SVM COVID-19 16 94.21% 89.58% 97.26% 

Pahar et al., 2021 
[160] 

Logistic Re- 
gression 

Tuberculosis 49 – TB: 93% TB: 95% 

Chowdhury et al., 
2021 [42] 

CNN COVID-19 723 COVID-19: 95.86% COVID-19: 91.49% COVID-19: 97.8% 
Healthy:95.86% Healthy: 97.8% Healthy:91.49% 
Symptomatic (Covid- 
19):81.76% 

Symptomatic (COVID- 
19): 77.78% 

Symptomatic (COVID- 
19):82.58% 

(continued on next page) 
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addition to collecting the cough data, this application proposed the 
diagnose of COVID-19 based on cough data. For the detection of 
coughs from other sounds, the authors trained a CNN model. While 
the diagnosis architecture leveraged a multi-pronged mediator 
centered risk-averse AI framework, showing an accuracy of more 
than 90% for the disease diagnosis. Transfer learning is leveraged to 
deal with the scarcity of the COVID-19 cough training data. This 
diagnosis framework is comprised of three independent classifiers, 
namely, Deep Transfer Learning-based Multi Class classifier 
(DTL-MC), Classical Machine Learning-based Multi Class classifier 
(CML-MC), and Deep Transfer Learning-based Binary Class classifier 
(DTL-BC). To create an autonomous model, if the output of any two 
classifiers mismatches then the result turned out to be inconclusive. 
Thus, the app shows promising results for the preliminary diagnosis 
of SARS-CoV-2 and has the potential to assist the medical practi-
tioners in timely treatment of the patients.  

• Virufy: An application and study developed by the researchers from 
25 countries with an aim to help the low-income countries fighting 
against COVID-19 pandemic outbreak. The app encourages the 
people from eight countries to record their cough sounds using 
smartphones and help to train a robust AI algorithm for better cough 
pattern recognition. By using this Virufy dataset together with the 
other publicly available datasets, i.e., Coswara and Coughvid, the 
team in [189] developed a deep neural network to show the appli-
cability of the crowd-sourced datasets for the detection of COVID-19 
based on the cough data only. Commonly used audio features, i.e., 
MFCC and mel-frequency spectrograms, are exploited for the model 
training. The trained AI-based method accurately predicted the 
COVID-19 infection with an ROC-AUC of 77.1%. Another study by 
the same research team is also performed to develop an ensemble 
learning architecture based on a residual-based neural network 

architecture (ResNet-50) CNN [190]. The model is trained using 
three different types of sample data, i.e, COVID-19 positive, symp-
tomatic COVID-19 negative, and asymptomatic. The model achieved 
remarkable performance in terms of AUC (99%) for COVID-19 
samples. For the future work, these authors aim to improve the al-
gorithm in a way that it could diagnose the disease based on the 
cough data with unavoidable background hospital noise.  

• Coughtest: In [43] the authors collected coughs from the patients who 
underwent SARS-CoV-2 virus test, using the application Coughtest 
[191]. Before recording the cough, the subject has to answer the 
questionnaire prompted on the website regarding age, gender, 
country of residence, smoker or non-smoker, and some specific 
questions, for instance, if a person has COPD, lungs cancer, cystic 
fibrosis, COVID-19, or has any symptoms. Collected data from this 
app and Coswara crowdsourced data result in a combined data from 
the six continents. After the normalization of data, features are 
extracted to train several classifiers; Logistic regression model (LR), 
Support Vector Machine (SVM), Multilayer Perceptron (MLP), Long 
Short Term Memory (LSTM), CNN, and a Resnet50. LSTM demon-
strated the best performance in discriminating the COVID-19 posi-
tive coughs from COVID-19 negative cough as well as from the 
healthy cough with an AUC of 0.94 based on 13 sequential forward 
search (SFS) best features. The researchers are doing continued ef-
forts to make the models more robust and implement the classifiers 
on the smartphone platform.  

• Coughdetect: A web-based full-stack automatic processing screening 
tool is developed for the detection and diagnosis of COVID-19 cough 
samples [192]. The subjects having symptoms such as cough, fever, 
shortness of breath etc. recorded their cough and sent to the server to 

Table 7 (continued ) 

Author Best AI Tech Disease Diagnose Sample size Accuracy Sensitivity Specificity 

Symptomatic 
(Healthy): 81.76% 

Symptomatic 
(Healthy): 82.58% 

Symptomatic 
(Healthy): 77.78% 

Kumar et al., 2021 
[222] 

DCNN COVID-19, asthma, bronchitis, 
pertussis 

1187 Covid+: 93.57% Covid+: 95.45% Covid+: 
Pertussis: 93.86% Pertussis: 93.57% Covid-: 
Bronchitis: 94% Bronchitis: 93.86% – 
Healthy: 95.45% Healthy: 94% – 
Asthma: 93.43% Asthma: 93.43% – 

Rao et al., 2021 
[45] 

DL COVID-19 DiCOVA 2021 
dataset, 
COUGHVID 

– 80.49% 77.88% 

Mohammed et al., 
2021 [223] 

Spiking NN COVID-19 Coswara 71% 68% 74% 

Erdoğan et al., 
2021 [44] 

SVM COVID-19 1187 98.4% – 97.3%  

Table 8 
Summary of literature on cough detection and diagnosis algorithms.  

Author Best AI 
Tech 

Disease Diagnose Sample 
size 

Diagnosis 
Accuracy 

Diagnosis Sensi- 
tivity 

Diagnosis Speci- 
ficity 

Detection 
Accuracy 

Detection 
Sensitivity 

Detection 
Specificity 

Pramono 
et al., 2016 
[27] 

LRM Pertussis, croup, 
asthma, bronchioli- tis 

38 – 92.38% 90% 85% 85.09% 98.32% 

Imran et al., 
2020 [32] 

CNN 
+ SVM 

COVID-19, bronchi- 
tis,pertussis 

543 92.64 COVID-19: 89.14% COVID-19: 96.67% 95.6% 96.01% 95.16% 
Healthy: 94% Healthy 99% 
Bronchitis:93.86% Bronchitis:96.33% 
Pertussis: 93.57% Pertussis:98.19% 

Wei et al., 
2020 [147] 

CNN 
+ SVM 

COVID-19, bronchitis, 
chronis phyringitis, 
pertussis 

194 COVID-19: 
76% 

Bronchitis: 94.3% Bronchitis: 91.2% 76% 98.8% – 
Pharyngitis:85.3% Pharyngitis:83.3% 
COVID-19:98.7% COVID-19:94.7% 
Pertussis:99.8% Pertussis:95.8% 
Healthy:96.3% Healthy:92.1% 

Bales et al., 
2020 [24] 

CNN Bronchitis, bronchi- 
olitis and pertussis 

268 89.6% Pertussis:95% Pertussis:96.9% 89.05% 91.901% 86.2% 
Bronchitis:93.8% Bronchitis:87.5% 
Bronchiolitis:80% Bronchiolitis:100%  
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have a preliminary diagnosis about the disease. The cough is then 
processed for the analysis and prediction. Finally, the user of the app 
received an asynchronous message through a secured connection 
informing if he/she has COVID-19 or not, and whether they should 
consult a physician. The authors extracted three sonographs namely 
MFCC, Melscaled spectrogram (Melspec), and Linear Predictive 
Coding Spectrum coefficients (LPCS) for the model training. In 
addition to cough, the authors used other biomarkers to predict the 
severity level of the disease. Based on the cycle threshold (Ct) from 
the qRT-PCR test or lymphocyte counts, the data is labeled to predict 
the extent of the infection: borderline positive, standard positive, or 
high positive. The data labeled based on qRT-PCR COVID-19 diag-
nosis results showed an encouraging AUC of 98.80% for the recog-
nition of the three disease severity levels. The proposed primary test 
can mitigate the cost of the COVID-19 diagnostic test and can make 
the processing faster.  

• Opensigma: A project by MIT researchers, aimed to diagnose COVID- 
19 by training the CNN model based on the cough data collected 
through website opensigma.mit.edu, which contains one of the largest 
COVID-19 cough datasets, comprised of 5320 subjects. Transfer 
learning was applied for AI speech processing framework for the 
feature extraction. The CNN- based framework is trained with the 
data collected from the COVID-19 and Alzheimer’s patients. The 
architecture is consisted of one poisson biomarker layer and 3 pre- 
trained ResNet50s in parallel. The trained model showed prom-
ising results in diagnosing COVID-19 with a sensitivity of 98.5% and 
a specificity of 94.2%. 

• Voca.ai: To enable the swift diagnosis of COVID-19, Voca and re-
searchers from Carnegie Mellon University worked on a project 
Voca.ai, which is an application and the website that asks the 

volunteers for the cough recordings [193]. The authors trained the 
XGBoost model using the crowdsourcing data with 1927 samples 
uttering vowels/sounds such as, “ah”, “oh”, and “eh”. The authors 
investigated the use of the symbolic recurrence quantification by 
extracting MFCC features to detect COVID-19 in the cough signatures 
of the healthy and unhealthy people. The performance analysis 
revealed that the model has the capability of detecting the under-
lying dynamics in the vocal sounds and can effectively detect 
COVID-19 with an overall mean accuracy of 97%.  

• QUCoughScope: Recently, an android application is developed by the 
researchers of University of Qatar to distinguish the COVID-19 pa-
tients from the other lung infections and normal people by collecting 
the cough and breathing acoustics. The data is comprised of the 
samples of 582 healthy individuals and 141 COVID-19 patients, out 
of which 87 are asymptomatic while the rest were symptomatic. The 
application asks for some symptoms-related questions and to record 
the audio signals, which are then sent to the server for the conversion 
of audio signal to spectrogram. To increase the sensitivity of the 
symptomatic COVID-19 patients and reduce the miss-classification, 
they deployed a cascaded pipeline comprised of three state-of-the- 
art novel deep CNN models. The overall sensitivity of the system 
reported by this study is 95.86%. 

These customized cough detection frameworks have the ability to 
monitor the symptoms and passively collect the data from patients using 
smartphones or websites. This approach can reduce the load of labeling 
the coughs from the medical healthcare personnel. Thus, the sophisti-
cated AI frameworks have the potential to provide preliminary diagnosis 
based on the collected cough signatures and can assist the medical 
practitioners in better decision making. 

Fig. 8. Customized cough detection and disease diagnosing applications.  
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4.6. Data pre-processing 

The completion of the data acquisition step leads to the next crucial 
step within the data analytics pipeline, i.e., data annotation and pre- 
processing. This step has paramount importance as it is required for 
the refinement of the cough samples and for designing a high quality 
robust prediction model, as shown in Fig. 5. Data pre-processing helps to 
boost the consistency and accuracy in the collected data, thus providing 
ease in the data interpretability [194]. In general, there are four main 
steps in data pre-processing: 1) data cleansing, 2) data integration, 3) 
data reduction, and 4) data transformation [195]. However, in the 
literature researchers adopt some steps while skipping the others, 
depending upon the data they collect from the sensing devices. During 
the pre-processing, the acoustic data is segmented into frames by 
isolating the part of the captured signal from the silence. It is a step that 
delineates the region of interest, i.e., cough events. For this step various 
tools and speech analysis software packages are used, for instance, Au-
dacity, PRAAT [196], WEKA [169], Wavesurfer [197], and MATLAB 
Signal processing tool-box [183]. These tools are used to remove the 
silent portion at the beginning and end of the captured recordings, and 
for the rescaling and down-sampling. PRAAT is also widely utilized for 
the data annotation [129–131,164,187,196]. In order to successfully 
perform this step, the acoustic data is segmented into frames, RMS en-
ergy for the acquired frame is calculated and compared with a pre-
determined thresholds. In case the frames have low energy, it is assumed 
to be silence or ambient sound and, therefore, are discarded. High en-
ergy windows are selected for further processing and feature extraction 
[137]. To further remove the noise and dispose of the minor artifacts, 
filtration is applied. Finally, the data is normalized within a given range. 
The above mentioned pre-processing steps are considered very signifi-
cant as they help in obtaining a well refined and transformed cough 
signals that are free from any ambient noise or silence. These 
pre-processed frames can then be used for the feature extraction and 
data analysis. Hence, this step is essential to improve the accuracy and 
performance of the prediction models. 

4.7. Smart AI-Based healthcare solutions involving edge/cloud computing 

It can be noted that after the successful collection of the data, it is 
further analyzed, for example, for correct labeling and annotation. If this 
is handled manually because of the restricted resources, then it leads to 
high latency and prevention of real-time accessibility of the smart so-
lutions developed for accurate detection and disease diagnosis. There-
fore, an end-to-end interconnected, reliable, accurate, and low latency 
solution is required for the assistance of existing medical practices. 
Progress in concurrently-advancing technologies such as cloud/edge 
computing and mobile wireless communication can be incorporated in 
enhancing the diagnostic accuracy of healthcare-based AI classifiers by 
providing the right type of data from the patients in a timely manner 
[198]. An end-to-end comprehensive health monitoring framework is 
shown in Fig. 9. It comprises of data acquisition devices that, as a first 
step, collect data from the patients. After the successful collection, 
depending upon the communication range and medium, the data is then 
transmitted through either wired or wireless connections to the cloud for 
its further processing including continuous detection and classification 
using AI techniques [199]. 

In some cases, to perform extensive processing and classification 
tasks, the collected data is sent to the ML backend core to employ the AI- 
based data-driven algorithms for an in-depth analysis and decision 
making [200,201]. The new paradigms of edge/cloud computing pro-
vide innovative solutions by bringing the resources closer to the patients 
for symptoms monitoring as well as to help the medical professionals by 
providing assistance in the form of low latency and energy-efficient 
solutions [202]. The aim of devising such all-inclusive smart health-
care systems is the automation of collection of patient’s vital data. 
Additionally, it is also made sure that the data is delivered using a 

secure, fast, and reliable medium to cloud for its further processing as 
well as storing, if required. Several advantages of such extensively 
connected and distributive framework involving the edge/cloud 
computing include: 1) automatic collection of real-time continuous 
representative data without draining the power resources of the data 
collecting devices, 2) elimination of manual data annotation to eradicate 
the issue of limited healthcare trained workers, and 3) provision of 
uninterrupted detection and diagnosis services with noticeable accuracy 
where the medical resource/facilities are scarce. Thus, such frameworks 
open up a paradigm to enable robust tele-medicine setup along with the 
facilitation of the medical experts using data-driven edge-enabled 
technologies. 

5. Detection and diagnosis using artificial intelligence 
techniques 

Before the advent of artificial intelligence techniques, predictive 
modeling in healthcare is merely considered as a source of provision of 
limited automated tasks such as data cleaning and automated organi-
zation of the health data. However, sophisticated machine learning/ 
deep learning tools have shown the ability to learn extremely complex 
relationships in performing some medical related decision. These 
intelligent data-driven medical models have the potential of pattern 
recognition and interpretation of the raw unstructured data. Thus, AI 
demonstrate encouraging results to facilitate the physicians for 
providing the support in decision making. These aspects have attracted a 
lot of attention and motivated the researchers to analyze the applica-
bility of the ML models in the medical domain. 

In the last decade, a significant amount of work has been done using 
conventional ML techniques and Neural Networks (NNs). Fig. 10 sum-
marizes the number of the peer-reviewed published papers in each year 
over the last decade that developed AI models trained by using the 
cough signals. This figure also shows the three most commonly imple-
mented ML/DL classifiers for the cough detection and disease diagnosis. 
The following section elucidates the state of the art AI techniques for 
cough-based disease detection/diagnosis. Furthermore, it discusses the 
classification of various ML/DL algorithms implemented in the litera-
ture, as illustrated in Fig. 11. Finally, it also provides the details of the 
types of features used to train the models and the performance metrics 
required for the validation of the AI-based frameworks. 

5.1. Types of features 

Cough is associated to over 25 respiratory syndromes and their un-
derlying conditions. Different coughs caused by distinct pathomorpho-
logical alternations manifest distinct latent features [203,204]. These 
features with discriminating characteristics can be extracted by 
employing the pertinent signal processing and statistical cough sounds 
transformations, to be used for the training of a sophisticated AI engine. 
Fig. 11 shows several types of the distinct cough features that can be 
leveraged for the development of ML/DL models. These features can be 
broadly categorized as time domain and frequency domain features. 

Some of the time-domain features that can be extracted are absolute 
mean, absolute median, standard deviation, skewness, kurtosis, and 
zero-crossing rate; and frequency-domain features such as spectral 
centroid, spectral roll-off, spectral variance, MFCC, and spectral chroma 
[169]. Spectral/Cepstral features which are based on the frequency and 
are obtained by converting the time domain signal using the frequency 
domain Fourier Transform. In [130] the authors exploit the fact that the 
cough signal is spread out in the entire frequency band, making the 
cough signal behavior distinctive from the speech signal. Therefore, they 
used the spectral structure as filter banks of feature extraction methods 
for the cough detection from the other acoustic signals. 

Cepstral features are also widely used to separate the cough features 
from other sounds like laughing, speech, and background noise. In [22, 
28,32,158,205] the authors exploit commonly using cepstral features 
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such as MFCC, Linear Prediction Cepstral Coefficients (LPCC), and 
Gammatone Frequency Cepstral Coefficient (GFCC). MFCCs can be ob-
tained by frequency transform of the log spectrum and these features 
take account for the non-linear response of the audio spectrum [206]. 
LPCCs are an extension of the linear prediction via autoregressive 
modeling in the cepstral domain [207]. The underlying differences 
among these features lie in the frequency representation scale and the 
feature dimensionality depends on the value of inner parameters values 
[166]. Apart from the aforementioned multidimensional features, there 
are some unidimensional features which are leveraged in [166], for 
instance, Spectral Standard Deviation (SpecSD), Spectral Skewness 
(SpecSkew), Spectral Kurtosis (SpecKurto), and Spectral Peak Entropy 
(SpecPeakEn), to train the k-NN model and demonstrated satisfactory 
performance. 

To capture the long term dynamics of the cough sound signals, 
temporal features such as zero-crossing rate, energy of the signal and 
maximum amplitude can also be used for the model training [179]. In 
[185], the authors performed the quantification of noise in the events 
containing cough signatures by computing the noise features like spec-
tral flatness, chirp group delaying, and harmonic to noise ratio are 
computed using the Voice Sauce toolkit. Other experiments based on 
both synthetic data and real data, demonstrate that ensembling of 
multiple frequency sub-bands has better performance than common 
feature extraction methods, such as MFCC and GFCC. 

5.2. Feature extraction 

Feature engineering is considered as one of the cornerstones for the 
development of ML/DL models. It is a process of extracting the most 
dominating and discriminating characteristics of an audio signal to 
obtain a suitable cough sound representation for the classification. To 
perform feature extraction, the cough waveform is modified to a rela-
tively minimized datarate, for further processing and analysis. Features 
can be extracted from either time-domain signals or from its frequency- 
domain representation. Some of the commonly used feature sets 
extracted from the audio and speech signals are: MFCC, Linear Predic-
tion Coefficients (LPC), LPCC, Line Spectral Frequencies (LSF), Discrete 
Wavelet Transform (DWT), and Perceptual Linear Prediction (PLP) 
[208]. As a general practice, for the generation of the features/sono-
graphs, the authors leverage feature extraction libraries or sometimes 
exploit hand-crafted features [137]. In [209] detailed description about 
the feature extraction libraries, suitability for various cases and their 
comparison is provided. Some of the frequently used libraries in the 
literature are: Hidden Markov Toolkit (HTK) [150,156,157,182], Librosa 
[32,40,205], Taros-DSP to extract MFCC features, jMusic to extract the 
spectral features [169], RASTAMAT Matlab Toolkit [130], OpenSMILE 
[210], and others include Meyda, Aubio, and LibXtract. 

Feature extraction libraries have certain distinct characteristics, i.e., 
Librosa helps to extract high-level and low-level features, however, it 

Fig. 9. A comprehensive smart healthcare framework involving Artificial Intelligence and Cloud Computing.  
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does not cluster the features. For the real time feature extraction, Meyda 
and LibXtract are more appropriate libraries, while for high level fea-
tures and segmentation, Aubio is the suitable choice. Combination of 
LibXtract and Marsysas can also be used for the data annotation and 
visualization of the audio cough features [209]. 

5.3. Categorization of ML/DL algorithms 

It can be noted that the psychological behavior of even same patient 
can be different in different environments while coughing, for instance, 
trying to resist the cough in the crowded environment or putting the 
elbow in front of the mouth, as a result, volume of the cough sound can 
be different. Therefore, the cough detection and disease diagnosis 
methods should be robust and highly sensitive to detect the cough 
acoustic data with minimal false alarm rate. In recent years, extensive 
research has been done in this domain to develop the automated AI- 
based screening tools for the timely and efficient detection/diagnosis 
of the respiratory conditions. Cough detection and diagnosis are essen-
tially binary and multi-class classification problems, respectively, where 
the key features (shown in Fig. 11) are used as inputs to the machine 
learning model, to learn the complex behavior of the cough audio sig-
natures for the respiratory disease diagnosis. In Fig. 11, we provide the 
categorization of the AI algorithms being implemented in the literature 
for the tasks of cough detection and disease diagnosis. The figure shows 
a range of different ML models 1) linear ML, 2) non-linear ML, 3) deep 
learning, 4) ensemble, and 5) other statistical methods that are lever-
aged for designing an ML-based disease diagnosis frameworks. In 
Table 6, we enlist the summary of the articles for cough detection; ML/ 
DL algorithms, associated disease, the sample size being used for the 
model training and the performance evaluation. Table 7 presents the 
comparison of the AI models for the cough-based disease diagnosis 
(classification) using similar evaluation criteria, whereas Table 8 shows 

the summary of the articles that implemented ML models firstly for the 
cough signature detection from other similar acoustic signals and then 
implement the separate classification model based on the cough sounds 
for disease diagnosis. Insights regarding performance and computa-
tional complexity for each of these ML algorithms are out of the scope of 
this article, the interested readers can refer to the references given in the 
respective tables. In addition, the merits and demerits of these algo-
rithms also cannot be fairly determined because of the difference in the 
underlying assumptions, sample size, and the approach taken to perform 
the experiments. For example, linear ML methods algorithms, such as 
Linear Regression, assume the training data to be of a specific functional 
form with a fixed size of parameters, whereas Non-linear ML algorithms, 
such as k-Nearest Neighbors and Decision Tree, are free to assume any 
functional form of the training data. Ensemble methods are of two types: 
Bagging and Boosting, which further have several variants, some of 
which have been listed in Fig. 11. Deep learning methods on the other 
hand, such as CNN and DNN, are universal learners. These algorithms 
are of significant value when a lot of training data is available, as they do 
not require manual feature engineering and are capable of latent feature 
extraction on their own. Some papers such as [132,152,158,187] 
exploited hybrid or ensemble-based methods. Other statistical methods 
(also listed in Fig. 11) are also used in earlier works on cough detection 
and diagnosis [30,128,149,161,187]. Among the most common com-
binations of feature set and ML model is MFCCs + SVM and the neural 
networks, which have the potential to model and achieve high accuracy. 
The performance of implementing different combinations of features 
and AI models such as MFCC + SVM, STFT + SVM and STFT + CNN are 
also combinedly studied in [137], and the authors demonstrated that the 
CNN has the highest performance. 

Fig. 10. Data-driven cough-based AI literature over the years.  

A. Ijaz et al.                                                                                                                                                                                                                                      



Informatics in Medicine Unlocked 29 (2022) 100832

21

5.4. Performance metrics 

Once the ML/DL are implemented and trained, the next logical step is 
to evaluate the effectiveness of the model based on metrics and datasets. 
Based on the implementation differences and training data, different 
performance metrics are used for the evaluation of the ML/DL models. A 
list of metrics is also given in Fig. 11, among these the most widely used 
performance measures are accuracy, F1-score, sensitivity, and speci-
ficity [32,74,193,212]. Cohen’s kappa coefficient is another perfor-
mance metric that overcomes the problem of overestimating the 
accuracy [193,224]. We enlist the accuracy, sensitivity, and specificity 
in Tables 5–8 for the articles performing cough detection, cough-based 
disease diagnosis, and the articles that develop a detailed AI-based 
model for the cough detection along with the cough-based disease 
diagnosis, respectively. 

In [121,164], authors proposed an energy-efficient cough detection 
framework that consumes minimal power of the smartphone. For some 
cough detection models, the performance is compared with the 
commercially available cough counters such as LifeShirt, LCM, HACC, 
VitaloJak in terms of precision, recall, and accuracy in [129,154,164, 
188,225]. In addition [169], evaluated the performance of the proposed 
algorithm based on the power and memory consumption and [226] 
proposed CoughNET, a CNN-LSTM processor, that consumes much less 
power and energy (290 mW and 2 mJ) compared to the other imple-
mented methods for cough detection in the literature. 

Another insightful performance measure is the confusion matrix, 
which is the correlation between the predictions of a model and the 
actual class labels of the data. Confusion matrix has the information of 
true positive, true negative, false positive, and false negative in itself and 
can be helpful to calculate the accuracy of the classification model. 
Hence, performance evaluation is an integral part of developing an AI- 
based framework. Also, the choice of metrics that are selected for the 
evaluation influences the performance of the machine learning models. 
It helps to select the ideal model that has the ability to correctly repre-
sent the data and depicts how accurately the selected model will work in 
the future, once incorporated in the real-world healthcare applications. 

6. Detection and diagnosis using NON-COUGH sounds 

Due to vocal cord dysfunction and respiratory issues, sounds other 
than cough are also produced by the vocal cords and blockage of the 
lungs airways. These sounds include noisy breathing, crackles, 
wheezing, stridor, pleural friction rub, and snoring. On one hand, these 
sounds can be misunderstood as cough making it difficult for a cough 
detector to separate cough from other sounds for further analysis. On the 
other hand, we can exploit these sounds along with the cough signatures 
for further research and better diagnosis of numerous diseases. In this 
section, we briefly discuss the literature that leverage non-cough sounds 
for the purpose of detection and diagnosis of different diseases.  

• Lung Sounds: A systematic review discussed the details of the lung 
sounds classification/characteristics [15]. The authors also pre-
sented the machine learning techniques developed for the analysis of 
lung sound anomaly. Obstruction in lung airways may cause sounds 
like crackles, stridor, and wheezes. In [21], the authors performed a 
study for the recognition of wheezing sound in children using 
smartphones. They employed a two-phase algorithm, with signal 
performance analysis and SVM training. They achieved 71.4% 
sensitivity and 88.9% specificity. The researchers from Digital 
Health Lab Samsung performed a feasibility study for developing a 
mobile sensor framework based on wheezes with the characteriza-
tion accuracy of 94.6% and recall of 74.62% [227].  

• Breath Sounds: These sounds can provide significant information for 
the respiratory diseases such as flu, pneumonia, and bronchitis etc. In 
[228] an automatic breath sound detection system based on hybrid 
perceptual and cepstral feature set (PerCepD) is proposed. The au-
thors trained SVM and Artificial Neural Network (ANN) models for 
the classification with high accuracy. In [20] an ML-based diagnosis 
mechanism is devised for pneumonia; a low-cost smartphone is used 
to collect breathing sound data. Features from various domains such 
as Teager energy operator-based, prosodic, spectral, cepstral, and 
delta-delta coefficients features are extracted. SVM and k-NN clas-
sifiers are trained to diagnose pneumonia patients with satisfactory 
accuracy. Healthy and COPD subjects are distinguished based on the 

Fig. 11. Categorization of the AI techniques and performance evaluation parameters.  
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respiratory sound analysis by employing machine learning tech-
niques in [229]. The system comprises of offline and online units. In 
offline systems, initially, preprocessing and feature selection tech-
niques are applied to train SVM, LR, k-Nearest Neighbor (k-NN), 
Decision Tree (DT), and Discriminant Analysis (DA) models. In on-
line unit, the trained model is used to categorize the normal and 
COPD breath sounds. Classification based on the spirometry pa-
rameters and respiratory sound parameters is performed.  

• Snoring sounds: Multiple studies performed research on the detection, 
classification, and analysis of the snoring sounds that can eventually 
be used for the diagnosis of obstructive sleep apnea. Sola et al. [19] 
trained an LR model using time and frequency parameters to track 
the respiratory disturbance index. The authors in [230] transformed 
the audio snoring signals to images and performed CNN classifica-
tion. Moreover, to classify snore and non-snore events, the authors in 
[231] proposed an automatic and unsupervised detection frame-
work. They recorded the respiratory sound signals from the patients 
and deployed fuzzy C-means clustering algorithm to achieve an ac-
curacy of 98.6%. An AdaBoost classifier is used for the discrimination 
of snore and non-snore acoustic events in [232].  

• Auscultations sounds: Respiratory Database@TR database which 
contains lung auscultations at specific points is exploited in [233]. 
Several features are used to train Deep Belief Network (DBN) along 
with other classifiers such as SVM, k-NN, and Decision trees for 
comparison. DBN demonstrated the best performance in terms of 
sensitivity of 91%, accuracy of 93.67%, and specificity of 96.33%. 
Auscultations sounds are used for the diagnosis of pneumonia in 
[234]. The pre-processing of the data is performed using a unique 
method empirical mode decomposition. The data is used to extract 
the features in order to train SVM and k-NN for the prediction of 
pneumonia or non-pneumonia with an accuracy of 99.7%. In [22], a 
deep learning framework is employed that originally integrates 
MFCC-based pre-processing of auscultation audio data, advanced 
LSTM and Gated Recurrent Unit (GRU) models for the detection of 
respiratory abnormal sounds and of chronic/non-chronic diseases. 
Finally, from the extracted features, pathology driven prediction task 
is addressed along with the anomaly prediction task. 

7. Challenges and future directions 

AI algorithms are entitled to have acclaimed performance in terms of 
accuracy for image-based and sound-based detec-tion/diagnosis 
methods. It is evident that AI has an immense potential to revolutionize 
the healthcare sector. The research community is continuously paving 
the way for the futuristic cost-effective, easy to use, and robust health-
care solutions. However, there are still some open research challenges 
that need to be addressed for further enhancement and innovations. This 
section briefly mentions some of the open challenges as well as the 
future directions to revitalize AI-based healthcare sector. These can be 
broadly classified into five major categories and are related to: 1) data, 
2) model, 3) hardware/software resources, 4) privacy, and 5) interdis-
ciplinary conglomeration. A summary of these categories is also pro-
vided in Fig. 12. 

7.1. Data collection, consistency, and availability 

For the successful operation of any AI algorithm, extensive correctly 
labeled and representative data is required. From the existing literature 
it is evident that the available data is sparse and dedicated efforts are 
required for the collection of abundant representative data that is not 
redundant and is available to everyone. To address the first and foremost 
challenge, i.e., data collection and its availability, some researchers have 
collected data in the past and made it publicly available. Unfortunately 
there is a lot of redundancy in data and since there are no universal 
guidelines for the data acquisition, the collected data is inconsistent. In 
the past, several solutions were provided to deal with the missing data 

including self-organization maps and multiple imputation [235], how-
ever, active solutions are still required. In order to solve these issues, 
guidelines for data collection need to be defined. Moreover, to reduce 
biasness, data need to be collected with different and varying environ-
mental setting and demographics. Since it is also important to correctly 
label the collected data, trained medical professionals are required to 
take part in this campaign. Finally, after successful collection, it is 
essential to make it open source so that the researchers across the globe 
could cross-validate their training models and thus develop robust and 
accurate detection/diagnosis algorithms. This would enable the 
research community and the healthcare sector to expedite the process of 
dealing with pandemics like COVID-19 in terms of capturing the un-
derlying dynamics and uncertainties in a timely manner. 

7.2. AI-based modeling and domain knowledge 

Once a sufficient amount of correctly labeled data is available, the 
next challenge lies to train the optimal AI models. Since the targeted 
domain here is healthcare, the AI models should be highly accurate 
along with the better understanding of the underlying dynamics. The 
advancements in the learning process have undoubtedly improved the 
performance, however, it also increases the model complexity excep-
tionally by deploying it as a black-box. This hinders to understand the 
insights about the learning behavior, hence, leading to uninterpretable 
predictions. 

For the AI models to be incorporated in the medical practice, it is 
highly anticipated that the models should be interpretable, accountable, 
and justify the prediction fairness across model [236]. Moreover, the 
outcome of the algorithms should be corroborated with medical pro-
fessionals by providing the intuitive explanation and incorporating their 
domain knowledge. Thus, the developed model should be able to 
automate certain medical processes and significantly improve patient’s 
health in the absence of medical personnel. Also, we should beware from 
the caveat that big data is always informative, and the model is useful 
only when it is trained by the representative data. Hence, it is necessary 
to combine the data-driven methods with model-based methods. 

7.3. Hardware and software resources 

After training the optimal model, automated screening tools are 
required that are capable of recording 24/7 and able to process the 
recorded information quickly to provide results promptly on demand. In 
addition, the tools should have the characteristics such as unobtrusive-
ness, compactness, privacy preservation, ability to suppress the ambient 
noise, and separate the cough from similar other sounds like speech, 
laughing, wheezing, and sneezing. Finally, they should be able to cap-
ture the variability of the cough acoustics within and between in-
dividuals, combined with the additional complexity of different 
respiratory diseases. Utilization of smart portable devices and 
conglomeration of cloud computing is a viable solution to address these 
needs. Therefore, it is required to enable ML modeling on the edge de-
vices and building a distributed intelligence system. This research in the 
domain of collaborative computational edge/fog computing is still in its 
infancy and more efforts are required to use the resources to improve the 
QoS of the end-to-end system. 

7.4. Privacy and security 

When the users provide data for the disease detection/diagnosis, it is 
important to forward and process the data securely with integrity and 
confidentially protected from eavesdropping. As adversary may use the 
data for illegal purposes, highlighted by many studies [122,129,169]. 
Transferring data to the cloud while using semi-automated systems can 
cause data breaching. Well known features, such as MFCC, used for the 
cough-based ML model training, lack the potential of keeping the patient 
data anonymous. Therefore, preserving the anonymity of data in the 
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presence of power loss, failures, or attacks along with model security is a 
crucial aspect that needs to be incorporated in futuristic healthcare so-
lutions [237]. 

To hide the patient identity, one solution is to only send weights to 
the cloud server rather than features such as MFCC [238]. Along with 
keeping the patient anonymity, data integrity services need to be 
implemented to guarantee at the recipient end that the data has not been 
altered in transit by an adversary. Furthermore, adding authentication 
for both medical and non-medical applications can help verifying the 
data origin. Finally, since healthcare professionals are often also 
involved with the patient’s physiological data, it is highly desirable that 
a role-based access control mechanism should be implemented in 
real-time healthcare applications that can restrict the access of the pri-
vate physiological information. 

7.5. Interdisciplinary research 

In recent years, techniques have been evolved to become more 
refined and automated for the efficient information extraction from 
imaging and voice modalities by incorporating AI in order to ensure 
better patient care. However, most of the AI- based research is done by 
the researchers from technical sciences, and to deal with healthcare 
applications, specialization in bioinformatics, medical imaging, 
virology, and other related fields is also required. This challenge can be 
addressed either by collaborative work between experts from various 
related fields or by introducing new interdisciplinary specialization 
courses. 

7.6. Further recommendations and discussion 

The application of AI for detecting and diagnosing the respiratory 
diseases has created an auspicious trend and myriad of future possibil-
ities in the domain of healthcare. To overcome the aforementioned is-
sues, there is a growing interest in the research community for devising 
frameworks and solutions by exploiting the advances of ubiquitous 
computing. By formulating the diagnostic inferencing issue in a form of 
sequential decision-making process, that is backed up by the additional 

evidence generated from the relevant external resources, it is possible to 
develop a robust end-to-end disease diagnosis system. In addition, 
transfer learning can be exploited to accommodate the shortcomings of 
the limited data or unavailability of the computational resources. 

However, we anticipate more research in the domain of deep 
learning for better segmentation and accurate detection of cough sig-
natures. For DNN, creation of sufficient well-annotated and represen-
tative data sets are needed to accelerate the diagnosis process. There is 
also a need to make the dataset publicly available for research purpose 
and to develop the standardized formats. With the current advancement 
in technology and extensive recent literature detecting the onset of a 
various respiratory disease using smartphones, it can be inferred that 
such devices powered by AI, can be a suitable assistant to the medical 
practitioners. Such AI-based holistic systems have the potential to make 
healthcare more approachable and cost-effective. We can also leverage 
this fact for coping with the current pandemic like COVID-19 [32,40,43, 
125,144,239]. The final frontier for making this solution more prag-
matic is leveraging big data that would integrate technology, data 
mining for discovering patterns, clinical inference, and decision making 
under one platform [240]. Deep learning can explore and perceive the 
significant underlying quantitative biomarkers in Big data, that can 
assist the physicians for developing personalized treatment and man-
agement strategies. Lastly, necessary measures are required to motivate 
the healthcare community to incorporate the AI-based assistance for the 
accurate diagnosis. Hence, it is to be kept in mind, that the data-driven 
AI-based algorithms have the promising potential as an assistive tool for 
the preliminary detection and diagnosis in the realm of probabilities, 
however, the final verdict will still lie with the medical practitioners. 

8. Conclusions 

Recent advances in the healthcare domain demand revolutionized 
practices. There is an unprecedented interest towards data-driven pro-
cesses to unleash the computing power that AI can provide. Machine 
Learning-based frameworks are being leveraged for the general diag-
nosis of virulent maladies. By gathering these studies, this survey pro-
vides a comprehensive study on the existing literature on detection and 

Fig. 12. Challenges faced during the incorporation of the AI techniques in healthcare domain.  
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preliminary diagnosis of the respiratory diseases with the aid of cough 
sounds and AI- based models. Moreover, this survey presented meth-
odologies, data collection procedures, and analyzed objective assess-
ment algorithms, that are employed in the reviewed studies. 
Additionally, it also analyzed the studies in the broad categories, i.e., 
detection and diagnosis using cough acoustic and then by using similar 
sounds (lungs sounds, breathing, auscultations, and snoring). Lastly, it 
discussed several challenges and vulnerabilities that need to be 
addressed for the successful formulation of the ML pipeline in the 
healthcare along with the potential future extensions. The study con-
cludes that AI-powered solutions demonstrate promising potential for 
developing innovative clinical decision assistance and diagnostic tools 
that can help the healthcare community and policy makers to revitalize 
the existing healthcare practices. 
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[167] Monge-Alvarez J, Hoyos-Barceló C, Dahal K, Casaseca-de-la Higuera P. Audio- 
cough event detection based on moment theory. Appl Acoust 2018;135:124–35. 

[168] Sharan RV, Abeyratne UR, Swarnkar VR, Porter P. Automatic croup diagnosis 
using cough sound recognition. IEEE Trans Biomed Eng 2018;66(2):485–95. 

[169] M. J. Rahman, E. Nemati, M. Rahman, K. Vatanparvar, V. Nathan, and J. Kuang, 
“Efficient online cough detection with a minimal feature set using smartphones 
for automated assessment of pulmonary patients.”. 

[170] Agbley BLY, Li J, Haq A, Cobbinah B, Kulevome D, Agbefu PA, Eleeza B. 
“Wavelet-Based cough signal decomposition for multimodal classification. In: 
2020 17th international computer conference on wavelet active media technology 
and information processing (ICCWAMTIP). IEEE; 2020. p. 5–9. 

[171] Balamurali B, Hee HI, Teoh O, Lee K, Kapoor S, Herremans D, Chen J-M. 
Asthmatic versus healthy child classification based on cough and vocalised/A:/ 
sounds. J Acoust Soc Am 2020;148(3):EL253. 

[172] Abaza AA, Day JB, Reynolds JS, Mahmoud AM, Goldsmith WT, McKinney WG, 
Petsonk EL, Frazer DG. Classification of voluntary cough sound and airflow 
patterns for detecting abnormal pulmonary function. Cough 2009;5(1):8. 

A. Ijaz et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S2352-9148(21)00294-X/sref113
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref113
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref114
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref114
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref114
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref115
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref115
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref116
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref116
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref116
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref117
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref117
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref117
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref118
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref118
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref118
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref119
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref119
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref120
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref120
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref120
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref120
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref121
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref121
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref121
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref122
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref122
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref123
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref123
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref123
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref123
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref124
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref124
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref124
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref124
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref125
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref125
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref125
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref126
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref126
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref127
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref127
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref127
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref128
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref128
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref128
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref129
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref129
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref129
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref130
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref130
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref130
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref130
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref131
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref131
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref131
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref132
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref132
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref132
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref133
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref133
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref133
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref133
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref134
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref134
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref134
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref135
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref135
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref135
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref136
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref136
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref136
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref137
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref137
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref137
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref139
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref139
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref139
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref140
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref140
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref140
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref141
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref141
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref141
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref142
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref142
https://github.com/virufy/covid
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref144
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref144
https://innovation.mit.edu/cord19/
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref146
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref146
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref146
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref147
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref147
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref148
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref148
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref148
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref149
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref149
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref150
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref150
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref150
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref151
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref151
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref151
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref152
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref152
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref152
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref153
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref153
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref153
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref153
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref154
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref154
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref154
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref155
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref155
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref156
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref156
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref157
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref157
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref158
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref158
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref158
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref159
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref159
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref159
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref160
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref160
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref160
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref161
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref161
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref162
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref162
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref162
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref162
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref163
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref163
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref163
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref163
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref163
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref164
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref164
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref164
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref165
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref165
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref165
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref166
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref166
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref166
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref167
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref167
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref168
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref168
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref170
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref170
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref170
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref170
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref171
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref171
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref171
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref172
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref172
http://refhub.elsevier.com/S2352-9148(21)00294-X/sref172


Informatics in Medicine Unlocked 29 (2022) 100832

27

[173] Kosasih K, Abeyratne UR, Swarnkar V. High frequency analysis of cough sounds 
in pediatric patients with respiratory diseases. In: 2012 annual international 
conference of the IEEE engineering in medicine and biology society. IEEE; 2012. 
p. 5654–7. 

[174] Abeyratne UR, Swarnkar V, Setyati A, Triasih R. Cough sound analysis can rapidly 
diagnose childhood pneumonia. Ann Biomed Eng 2013;41(11):2448–62. 

[175] Di Perna L, Spina G, Thackray-Nocera S, Crooks MG, Morice AH, Soda P, den 
Brinker AC. “An automated and unobtrusive system for cough detection. In: 2017 
IEEE life sciences conference (LSC). IEEE; 2017. p. 190–3. 

[176] Drugman T, Urbain J, Bauwens N, Chessini R, Valderrama C, Lebecque P, 
Dutoit T. Objective study of sensor relevance for automatic cough detection. IEEE 
J Biomed Health Inform 2013;17(3):699–707. 

[177] Swarnkar V, Abeyratne UR, Amrulloh YA, Chang A. “Automated algorithm for 
Wet/Dry cough sounds classification. In: 2012 annual International conference of 
the IEEE engineering in medicine and biology society. IEEE; 2012. p. 3147–50. 

[178] Swarnkar V, Abeyratne UR, Chang AB, Amrulloh YA, Setyati A, Triasih R. 
Automatic identification of wet and dry cough in pediatric patients with 
respiratory diseases. Ann Biomed Eng 2013;41(5):1016–28. 

[179] Swarnkar V, Abeyratne UR, Amrulloh Y, Hukins C, Triasih R, Setyati A. “Neural 
network based algorithm for automatic identification of cough sounds. In: 2013 
35th annual International conference of the IEEE engineering in medicine and 
biology society (EMBC). IEEE; 2013. p. 1764–7. 

[180] Amrulloh YA, Abeyratne UR, Swarnkar V, Triasih R, Setyati A. Automatic cough 
segmentation from non-contact sound recordings in pediatric wards. Biomed 
Signal Process Control 2015;21:126–36. 

[181] Nguyen KA, Luo Z. “Cover your cough: detection of respiratory events with 
confidence using a smartwatch. In: Conformal and probabilistic prediction and 
applications. PMLR; 2018. p. 114–31. 
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