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Abstract—Densification and multi-band operation means inter-
frequency handovers can become a bottleneck for mobile user
experience in emerging cellular networks. The challenge is aggra-
vated by the fact that there does not exist a method to optimize
key inter-frequency handover parameters namely AS time-to-
trigger, AS-thresholdl and AS-threshold2. This paper presents a
first study to analyze and optimize the three A5 parameters for
jointly maximizing three key performance indicators that reflect
mobile user experience: handover success rate (HOSR), reference
signal received power (RSRP), and signal-to-interference-plus-
noise-ratio (SINR). As analytical modeling cannot capture the
system-level complexity, we exploit a data-driven approach. To
minimize the training data generation time, we exploit shapley
additive explanations (SHAP) sensitivity analysis. The insights
from SHAP analysis allow the selective collection of the training
data thereby enabling the easier implementation of the proposed
solution in a real network. We show that joint RSRP, SINR and
HOSR optimization problem is non-convex and solve it using
genetic algorithm (GA). We then propose an intelligent mutation
scheme for GA, which makes the solution 5x times faster than
the legacy GA and 21x faster than the brute force search. This
paper thus presents first solution to implement computationally
efficient closed-loop self-optimization of inter-frequency mobility
parameters.

Index Terms—Mobility Management, Handover Optimization,
5G, 6G, Machine Learning

I. INTRODUCTION

Spectrum scarcity means densification and operation at
higher frequency bands cannot be avoided in emerging and
future networks [1]. In addition, operating at higher frequency
bands also requires reducing cell sizes and concurrent opera-
tion at multiple frequency bands [2]. However, one caveat of
dense base stations (BSs) operating on a motley of frequency
ranges, is the increase in the complexity of the mobility
management as well as a more pronounced effect of sub-
optimal mobility parameters on user experience and resource
efficiency. This is due to the proportional increase in the
number of handovers (HO), with the decrease in cell size.
As discussed in [3], a wide range of key performance indi-
cators (KPIs) including user experience (RSRP), throughput
(SINR), HOSR as well as network signaling overhead hinge
on mobility management parameter configurations. A poor HO
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management leads to the degradation in several KPIs including
data rates, latency, retainability, and user quality of experience
(QoE). Optimal HO performance is also vital to support the
ultra-reliable low-latency communication (URLLC) use case
in 5G and beyond [4].

The current industrial practice of optimizing mobility-
related KPIs involves the manual tuning of HO related config-
uration and optimization parameters (COPs) [5]. These COPs
are tuned by leveraging human experience based hit and trial
and sometimes using vendor defined gold standards. These
gold standards are based on one-value-fits-all scenarios with-
out considering varying network deployment, user densities
and mobility patterns. Hence, this manual tuning is often sub-
optimal and even degrades KPIs in some cases. Moreover, the
human intervention based tuning process is not suitable for
rapidly changing network conditions. In addition to a large
number of BSs, an increase in the number of COPs per site in
emerging networks compared to legacy networks makes the
mobility COP optimization problem even more complicated
and expensive to manage manually. Therefore, the current hit
and trial based approach used in industry, is not viable for
emerging (5G) and future networks (6G).

State of the art self organizing network (SON) solutions do
provide some automation in COP tuning and KPI optimiza-
tion [6]-[9]. For instance, mobility robustness optimization
(MRO) is one of the SON functions, which deals with HO
parameter management [10]. MRO automatically adjusts HO
related parameters based on the past HO performance between
two neighboring BSs. Though one step ahead of the manual
tuning, the current SON solutions do not meet the ambitious
performance requirements of emerging and future networks
because of being reactive and relying on only past observations
instead of complete system behavior models [11]. In addition,
current SON solutions use a very limited number of mobility
COPs, i.e. cell individual offset (CIO), event A3 related time
to trigger (TTT), HO margin (HOM) and hysteresis etc., to
optimize the KPIs. An optimal and robust HO management
can only be devised if the COP-KPI relationship can be
quantitatively modeled. Despite the recent efforts on analytical
modeling of HO process with certain assumptions and limited
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COPs [12], [13], a tractable analytical COP-KPI model is not
feasible due to the system-level dynamics and complexity of
the cellular network involving mobile users. This calls for
investigating the data-driven models instead.

The data-driven handover models become more essential in
a multi-band heterogeneous networks due to the handovers
between different frequency bands. These handovers between
BSs operating at different frequency bands, known as inter-
frequency HO, are increasing as the number of frequency
bands increase, which is the case in 5G. With 6G expected
to support even larger number of frequency bands, the inter-
frequency handover management will become a more complex
and cumbersome task. To deal with this complexity brought
by multi-band operations in the current 5G and future 6G net-
works, data-driven models provide a viable solution. However,
a practical data-driven solution should possess two qualities:
1) it should converge quickly to deal with the time sensitive
nature of handovers and to keep up with the rapidly changing
network conditions; 2) it should build on 3GPP standardized
handover procedures for rapid industrial uptake.

Data-driven models can be leveraged to quantify the COP-
KPI relationships. However, an efficient data-driven model
needs training data with the following two underlying con-
ditions: 1) data should be sufficiently large and 2) data should
be representative. Although, massive data can be mined from
a real network meeting the first condition efficiently, the real
challenge lies in the representativeness of that data because op-
erators cannot afford to try all possible combinations of COPs
on the live network due to the inherent risk of performance loss
during the process. Secondly, such data cannot be shared with
academia for privacy and business protection reasons. Even if
painstakingly gathered and shared, irrespective of the volume,
experience shows in case of cellular networks that real data
alone is not representative enough to train reliable models,
and it has to be augmented with authentic synthetic data
anyway. To address the issue, in this study, we generate and
exploit reliable synthetic data to solve the important problem
of key mobility parameters optimization for inter-frequency
HOs. We propose a framework to optimize three COPs namely
AS5-threshold1, AS5S-threshold2 and A5-TTT. Event A5 is the
most widely used event to trigger inter-frequency HO in
industry. The proposed framework works in tandem with the
current 3GPP standardized methods and does not require new
HO standardization efforts. enabling the swift uptake of the
proposed solution by network vendors and operators alike. The
major novelties in the proposed framework include: 1) the first
framework to perform multi-objective optimization of RSRP,
SINR and HOSR as a function of relatively less explored A5
inter-frequency HO parameters; 2) the framework addresses
the training data scarcity challenge by leveraging a reliable
3GPP compliant simulator [14]; 3) performance improvement
of machine learning (ML) algorithms utilizing SHAP-based
smart COP sampling; and 4) SHAP-based intelligent mutation
scheme for GA (IMGA) to accelerate convergence.

A. Related Work

A HO is triggered by pre-defined events called “Measure-
ment Events”. 3GPP release 16 [15] has defined standard
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events for 5G NR, which can aid HO decisions. Most of the
existing studies optimize HO related parameters of event A3
to improve certain KPIs [16]-[30]. A simulated model for LTE
HOs was presented in [16], which showed the variation in HO
failures and HO frequency with varying mobility parameters
(offset, TTT and filter coefficient) and different user speed.
However, this study lacked rigorous parameter optimization.
Authors in [17] extended the work by optimizing a weighted
sum of three KPIs, HO failure ratio, ping pong HO ratio and
radio link failure (RLF) ratio, with two COPs, hysteresis and
TTT. The optimization algorithm performs an iterative search
over hysteresis and TTT pairs to find the optimal combination.
However, the proposed optimization algorithm has a high
convergence time. The convergence time of this optimization
algorithm is improved in [18].

The impact of system load and the user speed with dif-
ferent TTT and HOM values of A3 for long-term evolution
(LTE) was studied in [19]. The study presented a fuzzy logic
controller that modifies HOM to optimize call dropping ratio
and HO ratio. Authors in [20] followed a different approach
and categorized users based on the speed and traffic type.
They presented an algorithm to tune TTT and HOM of A3
independently for each user category and optimized two KPIs,
RLF and ping-pongs. In contrast, users were categorized using
clustering in [21]. This study jointly optimized HO failure rate,
ping pong rate, achievable data rate and number of HOs and
assigned a different TTT and offset of A3 for each cluster. A
different set of inputs was used in [22] and the study presented
a fuzzy logic based algorithm to determine hysteresis margin
of A3. The fuzzy logic based algorithm decides the value of
hysteresis margin from the user velocity, RSRP and RSRQ.
The study showed improvement in number of handovers, RLF
and ping-pongs. In contrast to the previous studies, authors
in [23] optimized energy efficiency and SINR along with ping-
pong ratio. They presented an algorithm which tunes TTT and
hysteresis margin of A3 to optimize KPIs.

CIO as COP was used to develop a context-aware MRO
solution for reducing connection failures using A3 in [24].
In contrast, authors in [25] used hysteresis and TTT of A3
as COPs to develop a Q-learning based MRO solution and
optimized number of RLFs and ping-pongs. The idea was
extended in [26] by using three COPs; TTT, offset of A3 and
CIO, to develop a distributed MRO algorithm to minimize
RLF. The analysis was expanded to 5G settings in [27] and
the study used HOM and TTT as COPs while considering
user speed and RSRP. The authors proposed an auto-tuning
algorithm to optimize the number of HOs and HO failure ratio
using A3. A study on the real network using A3 instead of
simulations was done in [28]. The authors tuned CIO as COP
for each problematic cell-pair and showed improvement in late
HO rates, early HO rates and RLF rates. However, this study
did not consider any parameters of A3 for optimization.

While all the previous studies considered a trade-off be-
tween ping pong and RLF, the authors in [29] extended the
state of the art by proving that optimal settings of A3 exist
for minimizing both ping pong rate and RLF. In contrast to
the previous work, the implication of using the AHP-TOPSIS
method from WiMax for target BS selection in LTE-Advanced
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TABLE I
USE OF MEASUREMENT EVENTS FOR INTER-FREQUENCY HO [36]
Function Measurement| Vendor| Vendor| Vendor
Event 1 2 3
A3 Yes No Yes
Inter-Frequency HO A4 No Yes No
A5 Yes Yes Yes

cellular networks was done in [30]. The authors used Q-
learning to find the optimal value of TTT and hysteresis of
A3. Perhaps, the only study which ventured beyond A3 was
performed in [31]. In [31], a weighted sum optimization of
HO failure ratio, call drop ratio, and ping pong ratio using
reinforcement learning is done. The study considered TTT and
HOM for events Al, A2, A3, A4 and AS. However, this study
considers the same TTT and HOM for all the events instead
of optimizing distinct values of TTT and HOM for different
events.

Several studies followed a different approach compared to
the previously discussed literature and proposed new methods
for handovers in cellular networks. For instance, authors in
[32] proposed a reinforcement learning based handover policy
called SMART that reduces the number of HOs in a millimeter
wave (mmWave) network. SMART considered the mmWave
channel and user’s quality of service requirements for han-
dover decision. The authors also proposed a reinforcement
learning based BS selection algorithm. Meanwhile, an efficient
handover mechanism for radio access network slicing using
multi-agent reinforcement learning was proposed in [33]. The
study proposed a two-layered approach to deal with the
large action space and data sparsity. The study showed lower
handover cost, outage probability and number of handovers.
Authors in [34] proposed a proactive framework for handover
timing optimization and data rate degradation prediction for
mmWave networks. The study utilized camera images and
deep reinforcement learning to predict obstacles that caused
data rate degradation. Another study aimed to address the
beam forming and handover challenges in mmWave network
[35]. The authors utilized reinforcement learning to learn the
optimal backup BS and show constant rate and reliability with
smaller number of handovers. Although these studies show
promising results, the proposed solutions require changes in
the existing handover standards hindering a swift industrial
uptake.

The aforementioned studies investigate the intra-frequency
HOs using event A3. The second type of HOs called inter-
frequency HOs are more challenging to manage and lead
to more signaling overhead and quality of experience issues
due to inter frequency cell discovery. Data collected from
a leading operator in the United States, operating with 6
frequency bands, show that there are around 60% more inter-
frequency HO attempts compared to intra-frequency HO [36].
This percentage is likely to increase as the number of bands
being used increases e.g., due to co-existence of 4G and
5G at different bands. This signifies the importance of inter-
frequency HO for current and future cellular networks. How-
ever, despite their significance and associated open challenges,
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the performance optimization of the inter-frequency HOs is not
well explored in literature. Table I shows the allowed use of
each measurement event for inter-frequency HO by the three
major telecommunication vendors. It is clear that all the three
vendors support event A5 for inter-frequency HO, making it
the best choice for a self-optimization solution that will work
across all the vendors.

To the best of the authors’ knowledge, there does not exist a
study in literature that investigates the optimal configuration of
A5 parameters for inter-frequency HO. In addition, the main
optimization KPIs in the discussed literature include RLF rate,
HO failure rate and ping pong rate while some studies also
look at data rates and energy efficiency. However, varying HO
related COPs also impact core network KPIs such as serving
RSRP and SINR. This motivates a joint optimization of core
network KPIs in addition to HO related KPIs. Building on
our prior work [37], we jointly optimize coverage (RSRP),
capacity (SINR) along with HOSR to provide a holistic
framework for inter-frequency HO management.

B. Contributions

Fig. 1 presents the proposed self-optimization framework
for holistic mobility management in cellular networks. The
optimization trigger block will start the handover closed loop
self-optimization process. We have incorporated three types
of optimization triggers in the framework namely KPI-based,
event-based, and time-based. A KPI-based trigger is generated
when any KPI falls below the expected KPI value. Meanwhile,
any change in network deployment or any temporospatial
community event generate an event-based trigger. The time-
based trigger can be generated at pre-defined time intervals to
deal with varying user densities at different time of the day
or different days of a week. Once the optimization trigger
is generated, the framework jointly optimizes three KPIs
namely mean RSRP, mean SINR and HOSR as a function
of key inter-frequency HO COPs namely A5 thresholdl,
threshold2 and TTT. As quantifying the COP-KPI relationship
is essential for optimization, the framework leverages a data-
driven approach to quantify the COP-KPI relationship in the
absence of analytical models due to system-level complexity.
To solve the training data scarcity challenge for data-driven
COP-KPI relationship, the framework exploits a realistic 3GPP
compliant simulator [14]. In addition, the framework utilizes
a novel SHAP-based smart sampling approach to improve
the performance of the ML models. We also integrate an
intelligent mutation scheme for GA in the framework to
accelerate convergence, which is particularly imperative in fast
changing network conditions. The main contributions of this
work are listed below:

1) This paper is the first study to quantitatively investigate
the impact of key inter-frequency HO parameters namely
A5 thresholdl, threshold2 and TTT on three major KPIs
that dictate user experience namely RSRP, SINR and
HOSR. The analysis reveals three key insights: i) for
a given network setting, there exist optimal parameter
values for each KPI; ii) these optimal values do not
necessarily belong to the current gold standard; iii)
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Fig. 1. Closed loop self-optimization framework for cellular networks.

2)

3)

4)

5)

the optimal parameter values for the three KPIs do
not overlap. These insights call for a new method to
determine the optimal values of the three parameters.
We formulate and solve a multi-objective optimization
problem to determine the optimal values of thresholdl,
threshold2 and TTT. We design the objective function
such that it not only allows joint maximization of
all three KPIs, i.e., RSRP, SINR and HOSR but also
ensures fairness among KPIs while achieving the desired
operator defined goal for each KPI.

A key challenge in solving the said optimization prob-
lem is system level complexity that prohibits derivation
of an analytical model. We address the challenge by
exploiting data-driven modeling [2]. As operators do
not allow experiments with AS parameters outside the
gold standard range, we generate and exploit synthetic
training data using a realistic 3GPP compliant system
level simulator [14]. Results show that the XGBoost
based model outperforms other state of the art ma-
chine learning algorithms. Small root mean square error
(RMSE) in predicting the KPI values for given COPs
shows the ability of the models to accurately capture
the complex COP-KPI relationship.

A key challenge in using data-driven approach in real
networks is the difficulty of getting training data for a
large number of COP combinations. To overcome this
challenge, we leverage SHAP based sensitivity analysis
that determines the important ranges of every COP for
all the three KPIs by examining their rate of change.
Drawing insights from SHAP analysis, we devise a
smart sampling in which we collect more samples within
the important ranges and only sparse samples in less
important range. Results show that this sensitivity aware
data collection approach improves the accuracy of the
model compared to regular sampling.

We show that the joint optimization problem is non-
convex and solve it using genetic algorithm (GA) that

reduces the computational time by 4x compared to
brute force based search. In addition, we exploit the
SHAP sensitivity analysis in a novel way to improve the
mutations of GA that leads to 5x faster convergence time
compared to state of the art GA. To the best of authors’
knowledge, this is the first study that exploits SHAP
based sensitivity analysis for improving the convergence
time of GA.

6) This study thus presents first framework to enable closed
loop self-optimization of inter-frequency handover pa-
rameters for maximizing all three major KPIs that dictate
user experience. Fig. 1 presents the overall schematic of
this framework. The sensitivity analysis based training
data optimization combined with smart mutation based
GA means this solution can be implemented in real
networks even with sparse training data and limited
computational resources.

Rest of the paper is organized as follows: Section II
describes the event A5 and simulation setup along with the
problem formulation; the qualitative impact of inter-frequency
COPs on KPIs is presented in Section III; in Section IV,
we discuss the smart sampling approach to improve the data
quality for ML training and the performance of ML models
in capturing the COP-KPI relationship; Section V presents the
KPI optimization using the data-driven models while Section
VI concludes the paper.

II. SYSTEM MODEL

This section describes the 3GPP defined measurement event
A5 together with the parameters to optimize the mean RSRP,
mean SINR and HOSR. We then describe the COP-KPI
optimization problem followed by simulation setup.

A. Handover Event AS

Event AS is triggered when the RSRP to a user u from
its serving BS decreases below a threshold, i.e., thresholdl,
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and the RSRP to the same user from a target BS increases
above another threshold, i.e., threshold2. These conditions are
formally described in the following equations.

77: + A5hysl < A5th1

u (1)
un + Os,t - A5hyst > A5th2

where 7 is the RSRP of the user v with serving BS s, n;* is
the RSRP of the user with target BS ¢, O, ; is the cell-specific
offset also known as CIO from the serving to target BS, Abyys,
Aby and Aby, are the hysteresis, threshold] and threshold2
for event AS, respectively. HO using AS is triggered when
these conditions remain satisfied for a certain time, called time
to trigger, TTT. If multiple base stations satisfy the criteria to
trigger event A5, the BS with highest RSRP is chosen as the
target BS for handover [38]. Meanwhile, if two or more target
BS have same RSRP values, the BS with the lower physical
cell ID (PCI) is chosen. This target BS selection logic is based
on the implementation of one of the major equipment vendors
in the industry. On the other hand, a user will exit event AS
if either of the following conditions are met:

771; - A5hyst > A5thl

u 2
Ny + Ot 4+ Abpyse < Abyn

In addition to event A5, 3GPP has also defined measurement
events Al, A2, A3, A4 and A6. Cellular network vendors
leverage these events for crucial tasks in a cellular network.
For instance, event Al is majorly used to cancel measurement
gap (MG), event A2 is mostly used to trigger MG, event
A4 is used by most vendors to perform load balancing,
and event A6 is majorly used to activate secondary cell for
carrier aggregation. Event A3 and AS are the most popular
choices among vendors to perform intra and inter-frequency
handovers. However, only event A5 is supported by all the
major vendors to trigger inter-frequency handovers as illus-
trated in Table I. Thus, we utilize event A5 to devise an
inter-frequency optimization solution that will work across all
major equipment vendors. The parameters of other events are
kept constant to observe the variation in KPIs as a result of
changing event A5 COPs only.

B. Problem Formulation

RSRP of the user is an important performance metric
because it gives an estimate of the link strength between user
and the serving BS. The downlink RSRP 7n¥ for a user u
connected to the serving BS s is given by:

Ny = Psdy 3)

where P; is the transmit power of serving BS s and dY is
the path loss dependent component of the user u with the
serving BS s. The pathloss dependent component also contains
antenna gains as well as the shadowing for the user, which is
modeled as a gaussian random variable. The mean RSRP 7 of
all the users in the network can be described as:
> UK

i€U
n= “)

Ul

where U is a set of all the users in the network.
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Signal to interference and noise ratio (SINR) is also an
important KPI, which gives an estimate of the network capac-
ity. SINR ~¢'; on a physical resource block (PRB) j which
has been allocated to a user u from BS s can be written as
following:

w Py ;dy ;
’ys"j - K+ Z Pi,jdﬁj
Vi€ By

(&)

where P; ; is the transmit power of serving cell s at PRB j,
dy ; is the path loss dependent component of user u with the
serving cell s at PRB j and K is the thermal noise. P; ; is the
transmit power of interferer ¢ at PRB j, d}'; is the pathloss
dependent component of user u with the interferer ¢ at PRB
j and the set By contains all the interfering BS using the
same frequency band as the user u. The SINR ~¢ for user u
connected to BS s can be obtained by averaging the SINR on
all the PRBs allocated to the user. ¢ can be written as:

(6)

where set R, contains all the PRBs allocated to the user u.
The mean SINR ~ of all the users can be written as:

VZU oA

S

v = )
|U|

HOSR is another important KPI that captures the effective-
ness of the HO related parameter settings. Poor HOSR can
become a key bottleneck for URLLC in 5G and beyond, par-
ticularly for applications such as intelligent transport systems
and autonomous cars. HOSR ¢ can be described as:

c___HOs
" HOS + HOF

where HO.S and HOF are the number of successful and failed
handovers, respectively, in the network.

Mean RSRP, mean SINR and HOSR for the network can be
optimized jointly. We formulate a multi-objective optimization
problem to minimize the difference of 7, ~ and ¢ with
the target values of each KPI using A5 related COPs. The
formulation is given in (9). 1, v and &; are the target values
of RSRP, SINR and HOSR. « and § are the operator-defined
weights that can be used to adjust the relative importance
of RSRP, SINR and HOSR, respectively. The normalization
shown in the subscript removes the bias towards large values
of KPI and confirms that the importance of each KPI is only
defined by their respective weights. T'1, T2 are the ranges of
A5y and Abyp,, respectively, with the subscript showing the
minimum and maximum values and 7" is a set containing all
the values of A5rprr. The optimization variables are A5rrr,
A5y and Abyp. The first three constraints in (9) limit the
values of the optimization variables i.e., COPs in the 3GPP
defined ranges. The fourth constraint states that the sum of
the three weights is equal to one.

The motivation to include mean RSRP and mean SINR of
users in eq. (9) is tri-pronged. Firstly, mean RSRP and mean
SINR provide a good estimate of the system level quality of

x 100% (8)
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6
min \/Oé[(n - 77t)2]norm + 5[(’7 - ’Yt)Q]norm + (1 — = 6)[(5 - gt)2]norm§
AS5TrT, ASth1,AbMm2
subject to T1lmin < Abmi < T1max

T2min S A5th2 S T2max (9)

A5TTT eT

at+p<1

TABLE II TABLE III
DESCRIPTION OF SIMULATION PARAMETERS DESCRIPTION OF COPS TO GENERATE THE KPIs

Parameter Description Value COPs Values
Simulation area 4km? A5rrT [64, 128, 256, 320, 512] ms
Number of for 1.7GHz macro transmitters | 6 Abi [-90 to -120] dBm
Number of 2.1GHz macro transmitters 6 Abgn [-90 to -120] dBm
Macro cell height 30m
Small cell height 20m
Macro cell transmit power 30dBm . .
Small cell transmit power 30dBm generate the dz.lta, we exploit a state of .the art 3GPP-cqmp11ant
Total bandwidth for 1.7, 2.1 and 3.5 GHz | 10, 15 and 20 MHz system level simulator named SyntheticNET [14]. This is the
Total PRBs for 1.7, 2.1 and 3.5 GHz 52, 78, 106 first simulator to model 5G mobility parameters in detail
Pathloss exponent — 3 needed for this study. As shown in [14], this simulator has
Shadowing standard seviation 4 R .
Active user density g 15 per km? been cahbr.at.ed against real network measurements to ensure
Speed vector V [3, 60, 120, 240] km/h the authenticity of the data generated through it.
Transmission time interval (TTI) 1 ms A network with an area of size 2kmx2km is used for

service (QoS). Secondly, an analysis of Fig. 2 and 3 in sub-
section III-A shows that event A5 parameters can considerably
impact the RSRP and SINR by as much as 2.5dBm and
2.5dB, respectively. As this paper aims to optimize system
level QoS as a function of event A5 parameters, we have
incorporated mean RSRP and mean SINR in the optimization
eq. (9). Finally, the relatively unexplored nature of mean
RSRP and mean SINR as a function of mobility parameters in
literature further motivates us to consider them as KPIs. Aside
from mean RSRP and mean SINR, we have also included a
conventional HO-related KPI in the form of HOSR. While
RLF can be a good alternative, it can occur due to several
non-mobility related reasons such as RACH abort and when
the maximum number of RLC retransmissions are exceeded as
defined by 3GPP 36.331 [38]. Meanwhile, repeated handover
failure is one of the major reasons for RLFs and hence,
optimizing HOSR will reduce the RLF caused by handovers.

Solving this problem using the analytical method is not a
viable approach as tractable system level models for RSRP,
SINR and particularly HOSR as a function of the three COPs
is very difficult, if not impossible to derive. Even if ab-
stract mathematical models are created [12], [13], they cannot
capture the dynamics caused by the mobility of the users.
Therefore, to enable practical self-optimization solutions, as
originally proposed in [2], data-driven modeling is a more
viable approach to solve (9).

C. Simulation Setup and Data Generation

Collecting all the needed data from a live network though
plausible in theory, is impractical in practice due to sparse
and non-representative real data in addition to the privacy and
business protection concerns of operators. In this backdrop, to

Authorized licensed use limited to: University of Oklahoma Libraries. Downl

the data generation. We consider a three-tier heterogeneous
network, where each layer operates at different band. Two
layers are composed of macro cells and the remaining layer
is composed of small cells. Each macro cell has three sectors
and each sector operates at two frequency bands, 1.7GHz and
2.1GHz. Small cells have omni-directional antenna operating
at a frequency band of 3.5GHz. The initial deployment of the
users in the network follows a uniform distribution with user
density A, . Each user can move in the network with speed v,
chosen from a set V. All elements of the set V' are equally
probable and the speed value remains constant for a user. The
user mobility type is a random way point. The network level
simulation parameters are summarized in Table II.

In addition to the optimization parameters of interest, the
mobility related parameters of different events also need to be
defined to generate realistic data. Event A2 is used to trigger
the measurement gap for inter-frequency cell discovery as
inter-frequency HOs can only happen when MG is triggered.
The values of TTT, threshold, and hysteresis for event A2 are
set to 64ms, -90dBm and 1dB, respectively. Table III shows the
ranges of event A5 related COPs used to generate the data. A
wide range for A5y and Aby, are chosen to cover the effect
of hysteresis for making event A5 parameters optimization
more robust. A step size of 1dBm is used for both A5y, and
Adha.

III. IMPACT OF INTER-FREQUENCY HANDOVER
PARAMETERS ON KPIs

To date, the effect of changing the values of A5 related
COPs on the KPIs such as RSRP and HOSR is not fully
understood, even in academic literature [3]. Industry practice,
on the other hand, is to use gold standard fixed values recom-
mended by the vendors for A5 parameter settings without any
consideration of their optimality. Qualitative and quantitative
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Fig. 3. Impact of A5 thresholds and TTT on mean SINR.

insights into how A5 parameter values affect the KPIs are
essential to optimize these parameters. This section presents
the analysis to harness these insights. These insights are also
used to establish the structure of (9) to see whether or not it
is a convex optimization problem so an appropriate solution
approach can be adapted.

A. Impact on Mean RSRP and Mean SINR

We begin by analyzing the impact of A5try, Abgp, and
Abmy on mean RSRP by changing their values and logging
resultant mean RSRP. Result in Fig. 2 shows that the mean
RSRP decreases for very high and very low values of A5y,.
This happens because very high values of Aby, trigger late
HO as users are unable to transfer to the target BS with
better RSRP. This ultimately results in a longer stay of users
under the coverage of a BS with poorer RSRP. Similarly,
lower values of A5y, result in the too early HO to BS with
bad coverage lowering the overall RSRP. An opposite effect
is observed for variations in the values of A5y;. Unlike in
Abyp, very low values of A5y cause too late HO as event
A5 is triggered when the serving RSRP is already very poor.
Meanwhile, very high values of A5y result in too early HO.
In terms of variations in AS5prr, it is observed that different
A5trrr values shift the high RSRP area. As A5prr increases,
the concentration of higher RSRP goes towards lower A5y,
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represents the range of threshold values recommended by the gold standard
used in industry. Blue box is the area of high mean RSRP, for analyzed
network scenario. This finding can be insightful for the industry.

and higher values of A5u;. This observation provides insight
that if larger ASrpr is used (e.g. in dense urban area where
mobility is slow), to maintain good RSRP for the users, a
higher value of A5y, and a lower value of A5y, should be
used.

The impact of A5 thresholds and TTT on SINR is shown in
Fig. 3. SINR follows a similar trend as RSRP with poor SINR
observed for extreme values of A5y and Abgyy,. This happens
because extreme values of thresholds result in too early and too
late HO connecting the user to a serving cell with poor signal
strength. It also increases the interference from the neighboring
cells with better signal conditions and hence poor SINR of the
user. Although a similar tend is observed for RSRP and SINR,
different COP combinations maximize RSRP and SINR. This
observation provides additional rationale to include both RSRP
and SINR in the optimization problem.

Fig. 4 shows a 2D plot of mean RSRP versus A5g; and
Abyy for AbSrpr of 64ms and 512ms. In this figure, we
highlight with a red box, the A5 parameter values used as
gold standards (GS) by one of the leading operators in the
United States. We have also highlighted the blue area where
the highest average RSRP has been observed for the analyzed
scenario. This comparison shows a significant overlap between
the GS and our values of A5y and Abgp for ASprr of
64ms. However, the location of the blue box changes when
Ab5rrr is 512ms i.e., optimal values of A5 thresholds change.
Therefore, the current GS based fixed value setting approach is
not optimal and hence the need for self-optimization solution
as proposed in this study.

B. Impact on HOSR

The impact of different AS thresholds and TTT setting on
HOSR is shown in Fig. 5. At first glance, these results give
the impression that 100% HOSR can be achieved using higher
values of A5y, (i.e., greater than -100dBm). However, this
does not necessarily mean higher A5y, is the optimal setting.
As HO conditions using higher A5y, are more challenging to
achieve, very few HOs will occur, leading to extremely poor
RSRP and SINR, as seen in Fig. 2. In fact, using extreme
thresholds and TTT values result in no HO at all. Although
these settings result in lower HO failure, the users are forced
to stay under inadequate RSRP and SINR conditions for a

1:12:50 UTC from IEEE Xplore. Restrictions apply.

/gublicationsfstandards/Eublications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2022.3152510, IEEE

Transactions on Cognitive Communications and Networking

100

w
S
A5TTT

N
=]
HOSR (%)

-120
-110

—100 < 40

A
5 Thresholdl _00-120 P’"

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution rec S / %
niversity of Oklahoma Libraries. Downloaded on April 26,2022 a

Fig. 5. Impact of AS thresholds and TTT on HOSR.

long period leading to poor throughput and increased chances
of RLF. This can also be validated from Fig. 2 and Fig. 3,
showing the worst mean RSRP and SINR in the same area
where the HOSR is the highest. Fig. 5 also shows that most
HO failures occur when lower Aby; is used. This result is
expected as poor RSRP of the serving BS is one of the main
reasons for HO failure.

The conflicting trend of Fig. 5 compared to Fig. 2 and Fig. 3
shows a trade-off between optimizing RSRP and SINR while
optimizing HOSR, necessitating the joint optimization of the
three KPIs together as proposed in this paper.

IV. IMPROVED MACHINE LEARNING MODELS FOR
COP-KPI RELATIONSHIP LEVERAGING SHAP

This section presents the performance of machine learning
algorithms modeling the COP-KPI relationship. The goal is to
build a model that can predict mean RSRP, mean SINR and
HOSR as a function of A541, AS5m2, and A5trr. To solve the
challenge of rapid and representative data generation, we first
present a training data improvement technique using sensitivity
analysis on the initial data described in sub-section II-C. The
performance of ML models on the initial data and improved
data is also discussed.

A. Data Improvement using Sensitivity Analysis

Sensitivity analysis is usually used to explain the black-box
nature of data-driven models [39], [40]. In addition, sensitivity
analysis can provide the importance of each feature and is
also used for feature selection when there are a high number
of input features [41]. Different from these conventional use
cases of sensitivity analysis, we have used sensitivity analysis
to improve our data. We not only use sensitivity analysis to
find important COPs but also to identify the range of the COPs,
which produces the maximum change in KPI. A lower step
size (higher sampling rate) can be used in this important range
to enrich the data and ultimately training the machine learning
model on a more representative data for each KPI. Hence, the
model can learn the rapidly changing behavior of KPI. One
of the popular approaches for sensitivity analysis is the Sobol
method [42]. Sobol measures the impact of each feature based
on the variance of model output and gauges feature relevance
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on a global scale. This makes Sobol difficult to interpret
especially when the input features are inter-dependent. In
addition, Sobol leverages a regular conditional expectation and
hence it can highlight features that the model does not use but
are connected to the features used by the model.

To address the limitations of Sobol, we utilize another
sensitivity analysis tool called SHAP [43]. SHAP relies on
shapley values [44], a cooperative game theory concept in
which the impact of each player is calculated on the output
of the collaborative game. SHAP, unlike Sobol, concentrates
on local interpretations of each prediction and largely deals
with interventional expectations, making it easier to interpret
[45]. In addition, each data sample has a separate SHAP value,
which is useful to observe the impact on model output for
the complete range of features. We leverage this capability of
SHAP to find the feature range with the highest impact on the
model output. In the following subsection, we leverage the
SHAP analysis to study the impact of each COP on the three
KPIs and the inter-relation between the COPs. The insights
drawn from this analysis pave way for faster generation of a
representative data set.

1) Sensitivity Analysis for RSRP: Fig. 6 shows the mean
SHAP values and their distribution for RSRP. It is evident
from Fig. 6(a) that A5y, has the highest impact on RSRP
while A5y, and A5rrr have lesser and almost the same impact
on RSRP. Fig. 6(b) gives more detailed insights with color in-
dicating the COP (feature) value. The horizontal axis specifies
the SHAP value for each data point and the vertical thickness
indicates the data point density. The vertical thickness at the
extremes for A5y, implies that a large fraction of A5y, value
range (data points) has an extremely positive or negative
impact on RSRP. On the other hand, the thickness around
zero for A5y and A5trr shows that most of values for these
two parameters have minimal impact on RSRP. It can also be
seen that purple color, which corresponds to the mid values of
thresholds has the highest positive impact on RSRP for both
Abyp and Abg;. This gives the insight that RSRP maximizes
when Abg, and Aby; are not set to extremely high or low
values. In addition, extremely high values of A5y, (red color)
while extremely low values of A5y, (blue color) have the
most negative impact on RSRP and hence should be avoided
when tuning the COPs for optimizing the RSRP. In addition,
it is also evident that lower values of A5trr (blue color) have
the most positive impact on RSRP as shorter values of A5prr
ensures faster HO to a BS with better RSRP.

The inter-dependency of the three COPs is shown in Fig. 7
using the SHAP dependency plots. The horizontal axis shows
the variation in one COP and the vertical axis indicates the
impact on the output. The color bar shows another COP which
produces the highest change in the SHAP value of the first
COP under consideration. Each colored point represents a data
point with corresponding two COPs and the SHAP value.

Fig. 7(a) shows that, starting from -120dBm, increasing
the values of A5g; impacts RSRP positively until it reaches
around -105dBm and then the impact starts to decrease. It can
be seen that the rate of change in RSRP is highest when A5y
is in the range of -120dBm to -114dBm. The rate of change in
RSRP is lower outside this range of A5y;. In addition, A5y,
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TABLE IV
RANGES OF COPS WITH THE MAXIMUM RATE OF CHANGE IN THE KPIs
KPI Abpy (dBm) Abpy (dBm)
RSRP [-120 to -114] [-108 to -98]
SINR [-120 to -110] [-118 to -97]
HOSR [-120 to -110] [-106 to -97]
Total Range [-120 to -110] [-118 to -97]

interacts the most with A54,. The trend of SHAP values for
Aby, follows a similar trend as that of A5y, as shown in Fig.
7(b). The impact increases with increasing values of A5y,
increases up to the maximum SHAP value and then starts to
decrease. However, it can be seen that the rate of change of
RSRP is maximum when A5y, is in the range of -108dBm
to -98 dBm. Using these insights from SHAP analysis, we
have devised a smart data improvement approach. Since we
know that the rate of change of RSRP is higher from -120dBm
to -114dBm and -108dBm to -98dBm for A53; and A5,
respectively, we have sampled more values of both COPs in
this important range to capture the rapidly changing behavior
of RSRP. Fig. 7(c) shows that the impact on RSRP becomes
negative with increasing A5rrr and Aby, interacts the most
with A5TTT

A similar sensitivity analysis for SINR and HOSR reveals
a range of COPs which produces a higher rate of change in
the KPIs. This range of A5y, and A5y, for all the three KPIs
is shown in Table IV. A lower step size of 0.5dBm is used
in this range for the two COPs. This intelligent variation in
step size based on the relative rate of change of the three
KPIs improves the training data. This improved data contains
more information where the KPIs are rapidly varying and

U
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hence the machine learning algorithms trained on this data are
expected to better predict the KPI behavior. We have not over
sampled A5rrr because there are fixed 3GPP defined values of
Abrrr and hence a data sample outside these values cannot be
implemented in a practical cellular system. In addition, A5t
has the least impact on all the three KPIs, which indicates
that more samples of A5rrr may not improve the data-driven
models significantly.

B. Performance Comparison of Machine Learning Models

The performance of different machine learning algorithms
with uniform and variable COP sampling is presented in this
sub-section. A 80%-20% train-test data split is used and the
performance of six different regression techniques is evaluated.
Table V shows the performance of linear, polynomial, support
vector, decision tree, random forest and XGBoost regression
algorithm in terms of both training and testing normalized
RMSE. Due to the complex non-linear relationship between
COPs and KPIs, linear regression is not able to capture the
relationship leading to a high testing and training RMSE of all
the three KPIs with fixed sampling size. Similarly, the fourth
order polynomial and support vector regression techniques also
failed to capture the COP-KPI relationship displaying higher
RMSE compared to other algorithms. Results also show that
tree-based algorithms exhibit promising results in predicting
the KPIs. Top 3 algorithms with lowest test RMSE for RSRP,
SINR and HOSR are all tree-based with XGBoost being the
best showing test RMSE of only 2.63%, 6.40% and 5.2% for
mean RSRP, mean SINR and HOSR, respectively with a fixed
sampling size. Another important insight is very low training
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TABLE V
NORMALIZED RMSE COMPARISON OF DIFFERENT MACHINE LEARNING ALGORITHMS FOR RSRP, SINR AND HOSR PREDICTION WITH FIXED AND
VARIABLE SAMPLING SIZE.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

KPI Data Linear Polynomial Support Vector Decision Tree Random Forest XGBoost
Type Fixed | Variable| Fixed | Variable| Fixed | Variable| Fixed | Variable| Fixed | Variable| Fixed | Variable
RSRP (%) 16.52 15.84 6.51 6.27 4.20 3.90 0.0007 | 0.0007 1.12 0.097 1.41 1.64
SINR (%) Train 13.56 13.97 8.50 8.71 7.69 7.62 0.0003 | 0.0003 2.87 2.74 6.21 6.11
HOSR (%) 9.33 11.58 8.03 9.95 8.15 9.73 0.0035 | 0.0038 2.16 2.41 2.22 3.55
RSRP (%) 16.80 15.95 6.63 6.29 4.27 3.97 3.37 2.96 2.78 2.32 2.63 2.29
SINR (%) Test 13.59 13.59 8.34 8.42 7.55 7.39 8.74 8.41 6.51 6.66 6.40 6.28
HOSR (%) 9.82 10.97 8.62 9.43 8.85 9.1 7.45 6.65 5.53 5.08 5.2 4.98
TABLE VI Bayesian optimization is based on the ability to find better hy-
TUNED HYPERPARAMETERS FOR XGBOOST perparameters in less time compared to grid-based or random
KPL gamma | learning_rate | max_depth | n_estimators search methods. The superiority of Bayesian optimization lies
RSRP 0 0.63001 4 402 on the ability to evaluate best set of hyper-parameters based
SINR | 030331 0.27910 6 541 on the information of the past trials. Table VI shows the tuned
HOSR 0.00038 0.24219 9 146

RMSE of decision tree compared to the test RMSE indicating
an overfitting due to inherent absence of regularization.

The performance of each technique is also shown for
improved data after variable sampling of A5y, and A5y, as
described in sub-section IV-A. It can be seen that the test
RMSE of XGBoost improved by 0.34%, 0.12% and 0.22%
for mean RSRP, mean SINR and HOSR, respectively. This
corresponds to an improvement of almost 12.9%, 1.9% and
4.2% for mean RSRP, mean SINR and HOSR, respectively
with variable data sampling as compared to the fixed one.
A small improvement of 1.9% for SINR shows that it is a
difficult KPI to predict even with more data. This happens
due to high variation in SINR because of randomness in
interference at each PRB. On the other hand, the train RMSE
of XGBoost decreased with variable sampling compared to
the fixed sampling for both mean RSRP and HOSR. With
variable sampling, an increase in the test RMSE along with
the decrease in the train RMSE of XGBoost for mean RSRP
and SINR indicate that the model with variable sampling
can better address the overfitting problem. The RMSE might
not improve for some of the regression models with variable
sampling because the SHAP analysis was done for the best
performing ML model, which is XGBoost. SHAP analysis
for XGBoost model highlighted the important range of A5y
and Abgy,, but the important range of the two COPs will
vary from one ML model to another. The reason is the
different underlying learning behavior of each ML technique.
The RMSE is decreased for RSRP in all the ML techniques
indicating similar important range of the two COPs. The
RMSE of polynomial regression and random forest increased
for SINR while it decreased for all other techniques. This
shows that the important range of the two COPs is different
for polynomial regression and random forest as compared to
XGBoost for predicting SINR. The RMSE of linear regression,
polynomial regression and support vector machine increased
for HOSR with variable sampling highlighting a different
important range of the two COPs.

We have performed Bayesian hyperparameter optimization
of the XGBoost models for all three KPIs. The choice of
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hyperparameters for XGBoost model to predict mean RSRP,
mean SINR and HOSR. The XGBoost models to compute
train and test RMSE reported in Table V are trained using the
respective tuned hyperparameters of Table VI. The improved
XGBoost model has learned the COP-KPI relationships with
lower errors and can be used for KPI optimization in the
absence of a tractable analytical model.

V. OBJECTIVE FUNCTION OPTIMIZATION

The data-driven model developed in the previous section
can be used to find the optimal value of the objective function
defined in eq. (9). The COP combination producing the
optimal value of objective function can be used by network
operators. The solution thus can replace the current manual
and hit and trail based COP tuning with a self-optimization
system.

Fig. 8 shows the plot of the objective function defined in eq.
(9) with 0.33 value of both « and 8 (equal importance for all
three KPIs). Fig. 8(a), 8(b) and 8(c) shows how the objective
function varies with fixed A5trr, fixed A5y and fixed A5,
respectively. As shown in the plots, the objective function has
several minima for all the different COP combination, making
eqg. (9) a non-convex optimization problem. Moreover, eq. (9)
is a discrete optimization problem and has a finite search
space. Hence, eq. (9) is neither convex nor NP hard. As the
problem is not NP hard, it can be solved using a brute force
approach. However, the higher convergence time of brute force
is not suitable for the rapidly changing network conditions and
the time sensitive nature of handovers. To reduce the conver-
gence time, we leverage well-defined heuristic optimization
tools such as GA and propose IMGA to further accelerate
the convergence compared to off-the-shelf GA. We compare
the performance of the brute force method for optimization
with well-defined heuristic approach, genetic algorithm. The
choice of genetic algorithm as a heuristic tool is based on
its effectiveness in solving complex optimization problems of
cellular networks [46], [47]. We also compare the performance
with current industrial practice of using gold standards. The
objective function value reported for GS is very optimistic
because we have considered all the 225 combinations from GS.
However, gathering data even for 225 different combinations
from live network is a long shot for most network operators.
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Fig. 9. Dependence plot of A5y and A5y, for the utility function with o = 0.33 and 8 = 0.33

TABLE VII
COMPARISON BETWEEN GOLD STANDARD, GENETIC ALGORITHM AND
BRUTE FORCE

o 3 Optimization Objective | Optimal COP Values
Solution Function [A5TTT, ASth, ASth2]
Gold Standard 0.4138 [512, -109, -112]
0.33| 0.33] GA + XGBoost 0.3136 [256, -113, -117]
Brute Force 0.3136 [256, -113, -117]
Gold Standard 0.4197 [512, -104, -111]
0.5 | 0.25] GA + XGBoost 0.3575 [128, -115, -120]
Brute Force 0.3447 [256, -113, -117]
Gold Standard 0.4060 [512, -112, -112]
0.25) 0.5 [ GA + XGBoost 0.3022 [256, -113, -118]
Brute Force 0.2940 [128, -115, -113]
Gold Standard 0.3629 [512, -109, -112]
0.25| 0.25] GA + XGBoost 0.2965 [256, -113, -117]
Brute Force 0.2965 [256, -113, -117]

Table VII shows the optimal objective function and the
corresponding value of COPs for different weights of the
three KPIs, mean RSRP, mean SINR and HOSR. It can be
seen that the presented solution, GA combined with XGBoost,
offers significant improvement in objective function values
compared to GS. Table VII shows that both the objective
function and optimal COPs returned by GA+XGBoost are
either similar or much closer to the brute force compared to
GS and this trend is observed for all the values of o and S.
This highlights the superiority of the proposed solution over

GS in finding the optimal COPs. On the other hand, brute
force returns the optimal ground truth value of the objective
function and COPs. It is observed that GA+XGBoost returns
the same objective function and optimal COPs as brute force
for « = 0.33, f = 0.33 and o = 0.25, § = 0.25. In addition,
GA+XGBoost returns a value of objective function very close
to the brute force for « 0.5, 8 = 0.25 and o = 0.25,
B = 0.5, indicating convergence to the near-optimal COPs.
Although GA+XGBoost returns nearoptimal values in some
cases, GA+XGBoost has significantly lower convergence time
compared to brute force. For instance, the brute force needs to
look at all the 4805 COP combinations to converge while the
off-the-self GA takes 1200 iterations on average to converge
as shown in Fig. 11. In addition, the convergence time of
the proposed solution can be further reduced with SHAP
sensitivity analysis inspired novel IMGA presented in the
following subsection. This faster convergence is particularly
useful for handovers and rapidly changing network conditions.

A. Intelligent Mutations in Genetic Algorithm

It has been observed in Section IV that A5y, and Ab5g,
have the highest impact on all the three KPIs. The dependence
SHAP analysis of the utility function for the two COPs is
shown in Fig. 9 and can give insightful information that can
be exploited to improve convergence time of the GA. As the
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Fig. 11. Convergence time and objective function comparison between brute
force, GA and intelligently mutated GA with different SHAP value cutoff.

optimization problem in (9) aims at minimizing the utility
function, the values of the two COPs producing the negative
impact on the utility should be chosen. Horizontal lines with
green, yellow and brown color in Fig. 9 highlight cutoffs on
SHAP values of 0, -0.05 and -0.10, respectively. All the values
of Aby; and A5y, below the green have a negative impact
on the utility and hence, should produce the minimum utility
function. Similarly, the points below the yellow and brown
lines have more negative values narrowing down the two
COPs. We leverage this information for intelligent mutations in
Aby1 and Abyp. The mutations of the two COPs are restricted
to the values below each line to expedite the finding of the
fittest offspring. The comparison of the mutation process of
off-the-shelf GA and the proposed SHAP-based intelligent
mutation process of IMGA is illustrated in Fig. 10(a) and
10(b), respectively. GA leverages the XGBoost COP-KPI
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model developed in Section IV along with eq. (9) for fitness
evaluation. The faster convergence of IMGA stems from the
intelligent mutation block, which restricts the mutations of
A5y and Abg, within the SHAP cutoff range. A COP
mutation is only accepted if it is lies below the SHAP cutoff
value.

The convergence time along with the corresponding ob-
jective function value and optimal COPs for brute force,
simulated annealing, GA without modification and GA with
intelligent mutations of A5y and A5y is shown in Fig. 11.
A comparison of simulated annealing and GA without modifi-
cation shows that even off-the-shelf GA converges quicker for
the handover optimization problem compared to the simulated
annealing. The newly designed SHAP enabled IMGA further
accelerates the convergence widening the convergence time
gap between simulated annealing and IMGA. These results
show that IMGA is the best candidate solution for the opti-
mization problem in eq. (9). It can be seen that lowering the
cutoff of SHAP values for restricted mutations improves the
convergence time of IMGA. The convergence time of IMGA
for SHAP cutoff at 0, -0.05 and -0.10 improves by 4.2, 6.8
and 21.6 times, respectively, compared to brute force while
GA without intelligent mutation is only 4 times faster. The
faster convergence of IMGA comes without any degradation
in the objective function compared to that returned by the
GA without intelligent mutations when the cutoff is 0 and -
0.05. However, a slight degradation of 0.0155 in the objective
function is observed when the cutoff is -0.10. The fast con-
vergence time can make the solution agile especially for fast
changing network conditions. Compared to gold standard such
self-optimization can improve the KPIs like RSRP, SINR and
HOSR substantially.

VI. CONCLUSION

In the wake of densification and multi-band operation
envisioned for emerging and future cellular networks, inter-
frequency handovers can become a major bottleneck in user
experience. This paper presents the first solution to system-
atically analyze and optimize three key mobility management
COPs that dictate inter-frequency handover: A5y, A5y, and
A5trr. The proposed optimization solution jointly optimizes
three KPIs that contribute to user experience: RSRP, SINR and
HOSR. As analytical modeling is not viable for such system
level problem, we leverage data-driven approach. The insights
from SHAP sensitivity analysis are used to address the training
data scarcity problem and improve the training data through
selective over-sampling in important range and under-sampling
in less important range. SHAP sensitivity analysis shows that
Aby, has the highest impact on RSRP, SINR and HOSR
followed by A5y, and A5trr. State of the art machine learning
techniques are used to develop a COP-KPI model. Results
show XGBoost performs the best with RMSE of 0.0635dBm,
0.1995dB and 2.99% in predicting mean RSRP, mean SINR
and HOSR, respectively. After showing that the joint RSRP,
SINR and HOSR optimization problem is non-convex, we
solve it with GA that converges 4 times faster than the brute
force. We propose and utilize SHAP analysis based intelligent
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mutation scheme in GA. Results show that proposed scheme
can lead to 21 times faster convergence in GA compared to
brute force search at the cost of slightly sub-optimal objective
function.
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