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Abstract—In emerging 5G networks, User Equipment camps
traditionally on 4G network. Later, if the user requests a 5G
service, it can simultaneously camp on 4G and 5G using E-
UTRAN New-Radio Dual-Connectivity (EN-DC) approach. In
EN-DC, poor radio-conditions in either 4G or 5G network can
be detrimental to user Quality-of-Experience (QoE). Although
operators want to maximize EN-DC activation to fully utilize the
5G network, sub-optimal parameter configuration to turn on EN-
DC can compromise key-performance-indicators due to excessive
radio-link-failures (RLFs) or voice-muting. While the need to
maximize the EN-DC activation is obvious for maximizing the 5G
network’s utility, RLF and mute avoidance are vital to maintain
the QoE requirements. To achieve aforementioned tradeoff, this
paper presents the first solution to optimally configure the EN-DC
activation parameters. We collect two datasets from real network
to develop machine-learning-models to predict RLF and muting,
respectively. We also investigate and compare the potential
of various under-sampling, oversampling, and synthetic data
generation techniques including Tomek-Links and Generative
Adversarial Networks for their potential to address the data-
imbalance problem inherent in the real network training data.
Leveraging these models, we formulate and solve two QoE-aware
optimization problems that can maximize EN-DC activation while
minimizing RLF or voice-muting. System-level simulation-based
results show that compared to state-of-the-art solution that does
not take into account RLF or voice-muting risk in EN-DC
activation, the proposed solution can intelligently determine EN-
DC activation criteria that minimize the risk of RLF and voice-
muting while giving the operator’s desired level of priority to
maximize 5G network utilization.

Index Terms—5G, New Radio, EN-DC, Radio Link Failure,
Voice Call Muting, Artificial Intelligence

I. INTRODUCTION

5G New Radio (NR), with innovative use cases of enhanced
Mobile Broadband (eMBB) for large volume transmissions,
massive Machine Type Communications (mMTC) for sensors
and Internet of Things (IoT) devices, and Ultra Reliable
Low Latency Communications (URLLC) for mission critical
applications come with unprecedented Quality of Experience
(QoE) goals. Given the magnitude of these use cases and
applications, studies project that 5G subscriptions will top 2.6
billion by the end of 2025 [1]. While the capacity crunch
will be addressed primarily by ultra-dense Base Station (BS)
deployment and mmWave band utilization [2], ensuring QoE
with a conglomeration of 5G and legacy technologies, i.e.,
4G-LTE, remains an open challenge of utmost importance.

As per 3GPP Release 15 specification 37.863 [3], E-
UTRAN New Radio Dual Connectivity (EN-DC) allows 5G
capable User Equipment (UE) to simultaneously connect to

a 4G-LTE eNodeB (eNB) and 5G gNodeB (gNB). Although
EN-DC concept is first conceived in 3GPP Release 15, the
process stated in the more recent releases such as in Rel. 16
and 17 is similar without any significant changes. Therefore,
we focus our discussion on the EN-DC procedure standardized
in 3GPP Release 15. In EN-DC, the LTE eNB acts as a
master node, playing a crucial role in the EN-DC session
setup, while the gNB acts as a secondary node providing the
5G data path as illustrated in Fig. 1. This non-standalone 5G
network deployment enabled by EN-DC is aimed to address
the extreme capacity demand challenge, reduces the capital
expenditures (CAPEX) of network operators, and accelerate
the penetration of 5G networks. However, this additional
complexity leads to new challenges including the increased
signaling overhead and the need to determine the optimal
parameters for EN-DC activation/deactivation.

EN-DC activation comes with an intrinsic trade-off between
5G network utilization and potential QoE degradation due to
Radio Link Failure (RLF) and voice call muting. To the best of
the authors’ knowledge, there does not exist a study in open
literature to quantitatively analyze this trade-off and offer a
solution to optimally configure EN-DC activation parameters.
A high number of EN-DC activations are desirable for fully
utilizing the 5G network. However, an unintelligent maximiza-
tion of EN-DC activations can result in several Quality of
Experience (QoE) related issues, including excessive amount
of ping-pong EN-DC activation/deactivation, recurrent RLFs,
and exasperating voice call muting. RLF is the radio interface
disruption between BS and UE, and is typically caused by
coverage hole or poor signal quality as a result of high inter-
ference. UE observes high interference either during handover
(HO) process due to sub-optimal HO parameter configuration
[4]–[7], or due to the interference from the neighboring cells
usually at the cell-edge. On the other hand, voice call muting
refers to the instance when a UE is unable to receive audio
packets during an active voice call. Similar to RLF, voice call
muting is observed mostly due to poor radio conditions.

EN-DC operations require the control plane to be setup
between UE and LTE eNB, while the user plane can be
transmitted by 5G gNB or both LTE eNB and 5G gNB
simultaneously as per the configuration. As a result, UE must
maintain a strong connection both with LTE and 5G nodes
simultaneously. Poor radio conditions either on 4G or 5G can
subsequently result in RLF or voice muting, which will be
detrimental to the user experience.



Table I: Literature work on dual connectivity approaches.

Reference Energy
Efficiency

Resource
Scheduling

Throughput
Enhancement

Reliability Load
Balancing

Video
Transmission

User As-
sociation ML/AI Parameters for

Dual-Connectivity

[8] X X
[9] X X X
[10], [11] X
[12] X X
[13] X X X
[14] X X
[15] X X
[16] X TimeToTrigger only
[17] X X
[18] X SVM
[19] X
[20] X X X
[21] X
[22] X X X
[23] X X

Proposed
Framework X X X X Deep

Learning

5G b1-thresholds:
RSRP & SINR,
4G RSRP & SINR
thresholds

By accelerating the EN-DC activation in an attempt to
increase network efficiency, EN-DC may be triggered at poor
radio frequency (RF) conditions at either 4G or 5G network.
This can result in call disconnect, and service disruption.
Following the service disruption, repeated re-accessibility at-
tempts not only increase signaling but drain UE battery as
well. Thus, optimal configuration to activate/deactivate EN-
DC is essential to maintain the expected QoE and network
efficiency of the 5G network. This optimal set of EN-DC
activation parameters will also lower the signaling overhead by
preventing the unnecessary EN-DC activation attempts e.g., in
poor 4G or 5G radio conditions. Thus, the proposed solution
eliminates the additional signaling generated due to RLFs
caused by sub-optimal EN-DC activation parameters.

As quantifying the relationship between the signal condition
(i.e., RSRP and SINR) vs RLF and voice muting is essential
for optimization of EN-DC activation, the proposed framework
leverages a data-driven approach to quantify this relationship
in the absence of analytical models due to system-level com-
plexity. Existing analytical models to address the dual connec-
tivity issues are based on numerous assumptions to make the
equations tractable, however, the results become impractical
in real world scenario. On the other hand, existing simulators
do not capture the intricacies of a live mobile network, and
the simplification renders the results practically unusable in a
live network. With the widespread deployment of 5G mobile
networks, there is an urgent need to develop a real network-
based data-driven approach to address the aforementioned
challenges. To the best of authors’ knowledge, there does not
exist any data driven work based on real network data that
focuses on maximizing 5G network utilization through EN-
DC and minimizing potential QoE degradation due to RLF
and voice call muting.

A. Related Work

The concept of dual-connectivity has been studied well over
the past years [24]–[26]. A detailed review of these studies can

(a) EN-DC signaling and data connections

(b) EN-DC activation process

Figure 1: EN-DC activation and signaling process for 5G NR

be found in a recent mobility management survey in emerging
cellular networks [27]. Meanwhile, more specific studies of
dual-connectivity gain in terms of delay and throughput [8],
[14], [15], [18], [20], [22], mobility [9]–[12], energy efficiency
[13], [17], [19], [20], [22], reliability [12], [17], [21], and
latency [28] exist in literature as well. However, to the best
of the authors’ knowledge, no study in the existing literature
addresses the QoE-aware criteria to activate dual-connectivity
between two different mobile technologies viz a viz 4G and
5G. Particularly, there does not exist a study on RLF and
muting instances in the context of EN-DC.



Figure 2: Overview of the proposed AI-based prediction models for potential RLF and potential muting.

Most of the RLF-related literature [29]–[33] addresses intra-
frequency HO issues by controlling the system’s common
parameters. For instance, in [29], time-to-trigger (TTT) and
handover margin (HOM) are tuned based on the type of
RLF observed during the HO. Similarly, in [30], authors
propose to tune A3-offset to prevent RLF between intra-
frequency neighbors. Authors in [31] categorized HO failure
into too early, too late, and wrong cell HO to adjust TTT and
A3-offset accordingly. Apart from optimizing intra-frequency
HO parameters, authors in [32] proposed transmission power
adjustments to eliminate coverage holes in an attempt to
avoid RLF. RLF detection approach in [33] used a radio
frequency (RF) threshold to detect possible instances of RLF
and accelerated the HO to a better cell if available. However,
no scheme to determine optimal RF thresholds is not presented
in the study.

On the other hand, the academic literature on voice call
muting, specifically IP-based Voice over LTE (VoLTE) muting,
is rather scarce. The primary reason for this is bi-fold; a) the
low penetration rate of VoLTE calls due to the incapability of
mobile handset, the inability of eNBs to cater VoLTE calls,
or the reluctance of the mobile network operators to enforce
VoLTE calls; b) the voice muting prevention is often treated
as a separate problem on its own. Instead, the traditional
hit-and-trial-based tuning of various parameters for coverage
hole avoidance, SINR improvement, seamless handover, and
resource availability is often assued to indirectly minimize
voice muting. The RLF avoidance approaches discussed above
[29]–[33] may minimize voice call muting as well, However,

the optimization techniques aimed specifically at voice muting
prevention need to meet more stringent criteria than the
aforementioned approaches. This is because, unlike traditional
HTTP/FTP traffic, voice call requires real-time low-latency
packet transfer for high definition and jitter-free voice commu-
nication. Hence, in a bid to camp the UE on the best available
frequency band, network operators use different set of mobility
parameters for VoLTE and ordinary data traffic.

In the context of voice call muting, the study of HO
between WiFi access points [34] and radio resource schedul-
ing [35] exist in literature. However, none of the existing
studies aim to investigate a scheme for a QoE-aware dual-
connectivity (EN-DC). Furthermore, as concluded earlier, most
of the RLF prevention approaches proposed in literature target
intra-frequency HO optimization and do not identify actual
measurement thresholds to detect possible RLF. Therefore,
there is a dire need for a framework that can detect potential
RLF threshold and potential muting threshold considering the
signal strength and quality, and utilize that information to
configure the optimal inter-Random Access Technology (inter-
RAT) parameters for resource-efficient and QoE-aware EN-DC
activation.

This paper is the extension of our previously published
conference paper [36]. In contrast to [36] the new contri-
butions in this work include a AI model for voice muting
minimization, and deep hyper-parameter optimization both
in the development of AI models and when minimizing the
impact of class imbalance. Moreover, in [36] the results shown
were based on random values of B1 RSRP thresholds. On



the contrary, this work presents the optimization function
formulation for RLF and muting aware EN-DC activation to
get the optimal parameters required for EN-DC activation.

The proposed model has been shown in Fig. 2. Though there
is clear similarity between the RLF and muting prediction
models, they are distinct in two key aspects. 1) Different
input data: RLF model relies only on RF data with past
RLF labels as input to it, whereas muting prediction model
relies on RF data with muting labels as well as the output
of the RLF model as input to it. 2) Different class imbalance
techniques: RLF prediction model works best with a different
imbalance technique (Tomek Link) compared to the muting
prediction model which performs best with GAN. Reason for
this difference in performance of class imbalance handling
techniques for the two models is explained in detail in Section
III-D and III-E.

B. Contributions

The main contributions of this paper can be summarized as
follows:

1) This is the first study to quantify and optimize the
trade-off between 5G network utilization and user QoE
degradation due to RLF or muting during EN-DC acti-
vation, leveraging real network data measurements. To
optimize this tradeoff, we propose a two-stage AI model
trained on real data from a live commercial network.
The developed model is capable of accurately predicting
QoE degradation in terms of potential RLF and muting
instances, as shown in Fig. 2.

2) We present a domain knowledge-based scheme to enrich
the minority RLF and muting samples by identifying
potential RLF occasions using low-level counters spec-
ified by 3GPP. To address the data imbalance problem,
we investigate the potential of a large number of data
balancing approaches, including state-of-the-art over-
sampling and undersampling techniques, as well as non-
traditional techniques such as Generative Adversarial
Network (GAN).

3) In order to enable network operators to configure two
different sets of mobility parameters for voice bearer
activated UEs and non-voice active UEs, we formulate
and solve two separate optimization problems that max-
imize EN-DC activation and minimize RLF or voice
muting risk. Given the non-convexity of the optimization
problems, we solve them using Genetic Algorithm (GA).
To evaluate the efficacy of GA to yield a near optimal
solution, we benchmark GA’s performance against a
brute force-based solution.

4) We perform extensive system-level simulations to evalu-
ate the proposed AI-based QoE aware EN-DC activation
framework while comparing it with the state-of-the-art
industry solution for EN-DC activation (i.e., EN-DC
activation without taking into account RLF or voice
muting risk). Results show that the proposed solution
can intelligently configure EN-DC activation criteria
such that RLF or voice muting can be reduced to
practically zero.

The rest of the paper is organized as follows. In Section
II, we briefly describe the 3GPP based EN-DC activation
procedure, RLF trigger conditions, and the support of voice
calls over cellular networks. Real LTE network measurement
data collection, exploration, and data imbalance issue are
described in Section III. The two stage AI model to predict
potential RLF and potential muting is also presented in Section
III. Optimization problem formulation for an efficient RLF and
mute-aware EN-DC activation criteria is discussed in Section
IV. In Section V we show that the Minimization of Drive
Test (MDT) data can be used to determine the suitable EN-
DC activation configuration parameters while minimizing the
chances of RLF and voice muting. Finally, we conclude the
paper in Section VI.

II. BACKGROUND

In this section, we briefly describe the 3GPP standard based
procedures for EN-DC activation, RLF trigger criteria, and the
support of voice calls over cellular networks.

A. EN-DC in 3GPP Release 15
A major focus of 3GPP Release 15 [3] is to get the first

incarnation of 5G NR into the field that complements the
existing 4G LTE network. To make this happen, a solution in
the form of Dual Connectivity option 3X or EN-DC is crafted.
EN-DC enables UEs to connect simultaneously to 4G and 5G
NR base stations. Under this solution, a UE first camps on 4G
eNB and then initiate activation of EN-DC. Fig. 1(a) illustrates
EN-DC signaling and data connections.

Master node (MN), LTE eNB in this case, starts the EN-
DC activation process by sending the EN-DC configuration
message to the UE. This message contains the event B1
measurement criteria that define the 5G RF threshold. 5G
capable UE sends event B1 to the MN if the Reference Signal
Received Power (RSRP) or Signal to Interference and Noise
Ratio (SINR) of the 5G cell becomes better than the B1-
threshold as shown in Fig. 1(b). The entering condition of
event B1 can be expressed as:

Mn +Ofn +Ocn–hyst > B1thres (1)

where Mn is the measurement result, either RSRP or SINR, of
the 5G gNB, hyst is the hysteresis parameter, Ofn and Ocn are
the optional frequency and cell offset parameters, respectively.

Once the MN receives the event B1 from the UE, it
communicates with the 5G gNB for admission control check,
and capability enquiry. 5G gNB is referred to as secondary
node (SN) after the EN-DC activation.

B. Radio Link Failure in 3GPP
Radio link failure is an instance when a UE abnormally

detaches its connection with the serving cell. RLF procedure
is the same for 4G and 5G networks and is observed when
either of the following three conditions is met continuously
for a certain period.
• When timer T310 expires after consecutive out-of-sync

indication parameter N310 has expired.
• When the configured number of consecutive unsuccessful

Random Access Channel (RACH) attempts have been
reached.



Figure 3: Summary of 3GPP-defined RLF trigger criteria.

• When the number of consecutive Radio Link Control
(RLC) retransmissions equals the value of the parameter
maxRLCretransmissions.

These conditions are also summarized in Fig. 3.

C. Voice Over Cellular Networks
The legacy 4G networks and the latest 5G NR networks

support voice services through VoLTE and Voice over NR
(VoNR) respectively. The packet switch-based VoLTE and
VoNR deliver high definition voice with much lesser jitter
and delay than the traditional circuit switch networks. 3GPP
[37] has standardized QoS Class Identifier (QCI) value of
5 for voice call signaling, and QCI of 1 for actual voice
call packets. Resource scheduling for a voice activated user
is achieved through Semi-Persistent Scheduling (SPS) where
a fixed number of resources are allocated with high priority
in a periodical manner and at predefined location within the
bandwidth. This is done to minimize the service interruption
for an active voice call due to resource congestion.

D. Relationship Between RLF and Muting
Although VoLTE and VoNR are given higher resource

allocation priority, they are still susceptible to muting under
poor RF conditions due to the drop or loss of voice packets.
Under worst circumstances, the voice muting can extend for
several seconds, which can be detrimental to user experience.
Unlike RLF which has underlying counters that trigger RLF,
voice muting is not dependent on any underlying parameters.
This is due to the real-time flow of packets between the two
participants, and call muting can be observed almost instantly
with deteriorating signal strength (RSRP) or quality (SINR).
Given the time sensitive nature of voice packets, call muting
can happen even if actual RLF does not happen and only the
conditions that can lead to potential RLF occur.

III. AI MODEL FOR RLF AND MUTING PREDICTION TO
ENABLE SMART EN-DC ACTIVATION

This section describes the process of collecting actual
measurement data from a real 4G network to the stage where
we develop AI models. The AI based prediction models are
designed to predict if a given set of RSRP and SINR conditions
are indicator of potential RLF and muting instance. These
models are trained by using classification approaches on the
historic data as explained in Fig. 2 and Section II. Note here
that we cannot employ a rule-based mechanism to identify the

RLF or voice muting, as the UE is limited to measure the RLF
counters only when it camps on the respective cell. The AI
models developed in this article can therefore proactively avoid
poor QoE due to potential RLF or voice muting before the UE
camps on the 5G cell, i.e., before the UE starts monitoring
3GPP based RLF counters. In other words, 3GPP rule-based
mechanism allows only reactive observation of the RLF after
EN-DC and thus cannot help in minimizing the RLF or muting
during EN-DC, whereas proposed AI based scheme allows
proactive prediction of the potential RLF and muting takes
that into account for optimal EN-DC activation. In this section,
we also highlight the challenge of severe class imbalance in
the collected data and analyze several methods to address the
issue.

A. Data Collection, Cleansing and Pre-Processing

1) Potential RLF: A drive test in a commercially deployed
4G network is conducted for a total of 13 hours. Measurements
including RSRP and SINR are recorded together with the low
level RLF related parameters mentioned in Section II-B at
a time interval of 100ms. Out of the 460,000 data samples
recorded, the observed instances of actual RLF are only 543
(∼7 RLF every 10 minutes). Using this highly imbalanced
raw data with very few RLF occurrences for training the
AI-models will give results biased towards the dominant
class i.e., no RLF. To address this problem, we enhance the
data set by incorporating all the chances of possible RLF
for making the model more robust in detecting RLF. Using
domain knowledge, we identify sets of RSRP and SINR
combinations where the corresponding underlying RLF re-
lated parameters (T310, N310, N311, maxRACHattempts,
maxRLCretransmissions) show abnormality. We designate
these points as potential RLF. The processed RF data with
potential RLF instances label is shown in the Fig. 4.

The data pre-processing involving the integration of the low-
level RLF related parameters leading to the actual RLF brings
the total RLF samples to 27,794. However, this number of RLF
samples still constitutes a very small fraction of the 460,000
total samples. This data when used for training the Machine
Learning (ML) models gives varying performance depending
on the ML tool used. However, due to severe class imbalance
between non-RLF and RLF classes, the performance remains
poor for all ML models. The performance of the state-of-the-
art ML models trained using an imbalanced dataset is shown
under the Raw Data column of Table II. A key observation
to be made from results in column 1 of the Table II that
due to extreme class imbalance, simpler ML models may
overfit more thus giving high accuracy by classifying almost
all samples as normal. More advanced models with a larger
number of training parameters such as XGBoost and deep
learning do not overfit to that extent but still, have high miss-
classification rate as indicated by their lower accuracy. This
observation highlights the significance of the class imbalance
problem in real data. This problem is addressed in a later
section. Accuracy metric in Table II is defined as below:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)



Figure 4: Potential RLF occurrences versus the UE RSRP and SINR
measurements.

where TP and TN are the the true positive and true negative
rate, and FP and FN refer to false positive and false negative
predictions.

2) Potential Muting: VoLTE call based drive test is con-
ducted for eight hours and call muting related data such as
RSRP and SINR measurement are recorded every 100ms. To
accurately identify the RF condition that can lead to call
muting, we place one static call participant under good RF
conditions. The other participating user is placed in a moving
vehicle with continuously changing RF conditions. Distin-
guishing voice muting is not as straightforward as identifying
RLF. Unlike RLF wherein users send flag to the base station
when it occurs, there does not exist any flag to identify
voice muting. Instead, using domain knowledge, we look into
the Real-time Transfer Protocol (RTP) packets transmission
to determine clues for the voice muting. RTP packets are
continuously exchanged between the UE and the BS during the
call period, and the absence of RTP packets can suggest muting
occasions. However, the absence of RTP packets exchange can
also be observed during the call setup phase and moments after
call termination which, if not identified properly, can lead to
erroneous muting identification. For this reason, we designate
the data points as voice muting only if the RTP packets are
absent while the voice call is in the established phase. With
this setup, out of the 0.3 million data samples recorded, we
observe 2092 actual voice muting instances (∼4.36 muting
instances per minute). Similar to RLF, the fraction of actual
muting is far lesser than the normal case.

For both the potential RLF and potential mute cases, we first
scaled the input data, and then performed a train-test split of
80%-20%. On the training data, we addressed data imbalance
by applying several techniques as discussed below.

B. Addressing Data Imbalance

As observed from results in column 1 of Table II, a key
challenge in creating an RLF and muting prediction model
is the training data class imbalance. If used without a class
balancing technique, ML models trained on the data will either
be highly biased towards the majority class mostly missing the
minority class instances, or will have low overall accuracy.
Misclassification of the minority class will be detrimental
to the fidelity of the model as in our context, the minority

class (potential RLF/muting class) is the class of interest.
For that reason, data imbalance problem must be addressed
to have meaningful results. Common techniques used for
data balancing fall under two categories namely oversampling
and undersampling. The former augment the minority class
to match the size of the majority class while the latter
performs the opposite. In the following, we briefly discuss
the approaches we leverage to address the data imbalance
problem. In the following discussion, we denote the minority
class and majority class as Cmin and Cmaj , respectively.
1. Oversampling Techniques:
• Random over sampling randomly duplicates observations

from the Cmin to reinforce its signal.
• Synthetic Minority Oversampling Technique (SMOTE)

synthesizes new minority instances.
• In Generative Adversarial Network (GAN), two neural

networks contest with each other in the training phase.
The goal of the first neural network is to befool the second
neural neural network by generating synthetic data that
resembles the input training data. The role of the second
neural network is to correctly identify the synthetically
produced data. In this context, we use GAN to create
new synthetic new samples of the minority class i.e.,
oversample the Cmin.

2. Undersampling Techniques:
• Random under-sampling randomly removes observations

from the Cmaj .
• Near miss algorithm eliminates the majority class data

point after identifying the two nearest samples in the
distribution belonging to different classes, thereby trying
to balance the distribution.

• Condensed Nearest Neighbor Rule (CNN) works by
classifying each sample of Cmaj using kNN (k-nearest
neighbor) with k=1, and misclassified samples are re-
assigned to Cmin.

• A pair of data instances (xi, xj) where xi ∈ Cmin,
xj ∈ Cmaj and d(xi, xj) is the distance between xi
and xj , is called a Tomek link if there is no data
instance xk (xk ∈ Cmin or xk ∈ Cmaj) such that
d(xi, xk) < d(xi, xj) or d(xj , xk) < d(xi, xj). The
tomek link algorithm removes the unwanted overlap
between Cmin and Cmaj by removing majority class

Figure 5: Structure of the deep learning based model for predicting
potential RLF. The model is trained, tested and validated after
addressing data imbalance using Tomek link.



Table II: Accuracy and F-1 score of the potential RLF models against various data-imbalance resolution techniques.

Classification
Algorithm

Metric Raw
Data

Random
over

sampling

Smote Random
under

sampling

Near
Miss

CNN Tomek
Links ENN NCL Cluster

Centroids GAN

Logistic
Regression Accuracy 97% 88% 89% 88% 95% 95% 97% 98% 97% 90% 97%

KNN Accuracy 98% 98% 95% 98% 88% 97% 97% 96% 97% 98% 97%
SVM Accuracy 97% 89% 89% 89% 89% 97% 89% 89% 97% 94% 97%
Naive Bayes Accuracy 97% 88% 90% 97% 95% 95% 96% 95% 96% 90% 96%
Decision Trees Accuracy 97% 93% 90% 90% 48% 93% 97% 96% 96% 88% 96%
Random Forest Accuracy 79% 94% 93% 93% 57% 97% 98% 97% 97% 94% 97%
XGBoost Accuracy 78% 93% 91% 91% 78% 97% 98% 97% 97% 94% 97%
Deep Learning Accuracy 74% 89% 89% 89% 72% 97% 99% 72% 98% 94% 97%
Logistic
Regression F1 0.75 0.88 0.49 0.88 0.68 0.67 0.74 0.74 0.74 0.53 0.75

KNN F1 0.78 0.78 0.68 0.78 0.44 0.75 0.78 0.72 0.77 0.69 0.79
SVM F1 0.73 0.88 0.88 0.88 0.88 0.75 0.88 0.88 0.74 0.63 0.76
Naive Bayes F1 0.70 0.88 0.50 0.70 0.62 0.69 0.70 0.66 0.69 0.51 0.72
Decision Trees F1 0.75 0.89 0.90 0.90 0.16 0.57 0.75 0.73 0.74 0.47 0.75
Random Forest F1 0.86 0.90 0.92 0.92 0.20 0.77 0.79 0.78 0.79 0.66 0.80
XGBoost F1 0.88 0.91 0.91 0.91 0.31 0.76 0.88 0.78 0.74 0.64 0.79
Deep Learning F1 0.87 0.88 0.88 0.88 0.10 0.76 0.93 0.10 0.80 0.62 0.76

Figure 6: Decision boundary of the potential RLF models shown in Table II.

Table III: Deep learning hyper-parameters for potential RLF model.

Hyperparameter Name Search Range/Value
DNN depth d {1,2,3,5}
DNN width w {5,8,10,16}
Activation Function (Hidden Layers) Relu
Activation Function (Output Layers) Sigmoid
Optimizer Adam (Gradient Descent)
Loss Metric Binary Cross Entropy

sample from Tomek link data pair. This is done based
on the assumption that for the data points that form a
Tomek link, either one of them is a noise or both are in
the borderline.

• Edited Nearest Neighbor Rule (ENN) removes any in-
stance whose class label is different from the class of at
least two of its three nearest neighbors.

• Neighborhood Cleaning Rule (NCL) modifies the ENN

where three neighbors of each data point are found. If the
classification of the data point xj ∈ Cmaj given by its
three neighbors contradicts the original class of xi, then
xi is removed. Conversely, if the data point xi ∈ Cmin
and the three neighbors miss-classify xi as a majority
class sample, then the nearest neighbors that belong to
the majority class are removed.

• In cluster centroids under-sampling, we find the clusters
of the majority class with K-mean algorithms. Then it
replaces the cluster points with cluster centroids as the
new majority samples.

C. AI Model for Potential RLF

After addressing the class imbalance problem, we design
to train and evaluate models using a range of state-of-the-
art ML techniques including logistic regression, KNN, SVM,



(a) Histogram and PDF for RSRP (b) Histogram and PDF for SINR

Figure 7: Effect of Tomek Links in addressing data imbalance and improving class isolation (highlighted by blue rectangle).

Naive Bayes, decision trees, random forest, XGBoost, and
deep learning based models.

To achieve optimal performance, we perform hyperparam-
eter optimization for each ML algorithm. To avoid under or
over-fitting, we investigate a variety of deep learning neural
network architectures with a range of hyper-parameters as
shown in Table III. Our experiments show that a deep learning
model with fully connected three hidden layers with 16, 16
and 8 neurons, respectively as shown in the Fig. 5, yields the
best results. The model is trained using epoch size of 100 and
batch size of 10.

Table II shows the accuracy and F1-score for various ML
models. Results show that deep learning with data imbalance
problem addressed by Tomek links outperforms others with
accuracy and F1 score of 99% and 0.93, respectively. The
superior performance of Tomek links stems from its ability to
delineate the class boundaries and remove noise and thus make
data less ambiguous. It helps to improve the isolation between
the overlapped classes by removing the majority samples at the
border area as illustrated in Fig. 7.

The decision boundaries of the ML models trained using
data from different data balancing techniques are shown in Fig.
6. As illustrated in Fig. 6(h), the decision boundary created
by the deep learning model using balanced data from Tomek
links indicates the expected increase in potential RLF with
deterioration of either RSRP or SINR.

D. AI Model for Potential Muting

We follow a similar approach to build an AI model for
potential muting prediction as in III-C. Table IV shows the
performance of various ML algorithms in predicting the po-
tential muting instances.

Unlike the potential RLF model where Tomek link based
preprocessing combined with deep learning worked best, here
deep learning model trained with data using GAN shows
the best results in terms of F1 score. For this model, we
also investigate a range of deep learning architectures with a
variety of hyper-parameters to prevent under- or over-fitting as
shown in table III. Our experiments show that a deep learning
model with fully connected three hidden layers of 8, 8 and

4 neurons, respectively yields the best performance for voice
muting prediction. The model is trained using epoch size of
100 and batch size of 10.

Since data generation using GAN is more complex com-
pared to other SOTA undersampling and oversampling ap-
proaches, we conduct an additional layer of sanity check by
comparing the real data and synthetic data generated by GAN.
Kullback–Leibler (KL) and Jensen-Shannon (JS) divergence of
the GAN generated samples from the real data, along with the
probability density function (PDF) of the original minority
class and the synthetically generated minority class data is
shown in Fig. 9. The results show that GAN has produced
synthetic data that closely resembles real data.

E. Why GAN Based Data Augmentation has Positive Gain for
Voice Muting Data and Negative for RLF Data

Fig. 8 shows that the class separation in the voice muting
data is much more pronounced than the RLF prediction shown
in Fig. 7. This difference in the class distribution stems from
the fact that: a) both classes belong to different metrics i.e.,
potential RLF and potential muting, b) network configures
voice bearer activated UE with a different and more aggressive
set of mobility parameters to keep the UE in a better RF
condition at all times. In the potential RLF case, the class
distribution in Fig. 7 is more overlapped. As Tomek links is
an approach designed to improve the class border isolation,
it leads to much better performance compared to other ap-
proaches, including GAN. In the case of RLF data, the use
of GAN to augment minority class worsens the performance.
This is because the GAN-generated synthetic data further blurs
the boundary between the classes.

On the contrary, in the case of call muting data, where
boundaries are relatively well defined, GANs generated data
addresses the class imbalance successfully without increasing
the boundary overlap to a level that would undermine the
performance of the model.

This is an insightful finding that suggest that despite their
popularity for augmenting training data, GANs should be used
cautiously as their gain can be negative instead of positive
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Figure 8: Effect of GAN in mitigating the class imbalance issue.

depending on the class distributions and overlap in the training
data.

IV. QOE AWARE EN-DC ACTIVATION

In this section, we describe the optimization function for-
mulation for RLF and muting aware EN-DC activation.

A. EN-DC Activation, RLF, and Muting Formulation

Current industry practice is to maximize the EN-DC acti-
vation instances for maximum utilization of the 5G network.
However, simply maximizing the EN-DC activation without
taking into consideration of the underlying trade-offs can be
detrimental to the user QoE due to higher RLF and voice
muting instances. Hence, mobile network operators should
take into account the following objectives when enabling EN-
DC in their network:

• Maximize EN-DC request by the EN-DC capable UE to
fully leverage the 5G NR features.

• Facilitate EN-DC activation for each EN-DC request,
which is essentially minimizing the difference between
the number of EN-DC requests and EN-DC activations.

• Avoid degradation in retainability due to RLF at either
4G or 5G network after EN-DC activation.

• Prevent voice muting after activating EN-DC for UEs
with voice service demands.

Using the notations defined in Table V, we can define the
number of EN-DC activations α as:

α(∆u,Θ, Uc) =
∑
u∈Uc

1 [∆u
i > Θi ∀ i] (3)

where 1{·} is the indicator function, and the subset Uc ⊆ U is
the set of EN-DC capable UEs configured with B1 measure-
ment report. ∆u

i is the i-th element of the set of RF condition
of user u ∈ Uc, i.e., for any user u, ∆u

1 = δu5R, ∆u
2 = δu4R,

∆u
3 = δu5S , ∆u

4 = δu4S . Similarly, the i-th element of the set
of thresholds is Θi, where Θ1 = θB1, Θ2 = θ4R, Θ3 = θ5S ,
Θ4 = θ4S .

(a) PDF, KL and JS Divergence for RSRP

(b) PDF, KL and JS Divergence for SINR

Figure 9: Comparison of the original minority class (muting in-
stances) and the synthetic data generated from GAN.

UEs may experience RLF after EN-DC activation due to
poor RF conditions. The number of RLF instances denoted
here by β can be defined as:

β(∆u, ζ, Ua) =
∑
u∈Ua

max
(
ζ(∆u,4), ζ(∆u,5)

)
(4)

where Ua ⊆ Uc is the set of EN-DC activated UEs, and ζ
is the potential RLF AI-Model, which takes in ∆u as input
and outputs a prediction of 1 or 0 representing the occurrence



Table IV: Accuracy and F-1 score of the potential voice muting models against various data-imbalance resolution techniques.

Classification
Algorithm

Metric Raw
Data

Random
over

sampling

Smote Random
under

sampling

Near
Miss

CNN Tomek
Links ENN NCL Cluster

Centroids GAN

Logistic
Regression Accuracy 99% 91% 89% 91% 98% 99% 99% 99% 99% 91% 99%

KNN Accuracy 99% 95% 97% 93% 95% 99% 99% 99% 99% 98% 99%
SVM Accuracy 99% 94% 96% 93% 94% 99% 99% 99% 99% 87% 99%
Naive Bayes Accuracy 99% 89% 86% 90% 91% 99% 99% 99% 99% 87% 99%
Decision Trees Accuracy 99% 97% 97% 89% 88% 97% 99% 99% 99% 90% 99%
Random Forest Accuracy 99% 97% 98% 92% 92% 99% 99% 99% 99% 97% 99%
XGBoost Accuracy 99% 96% 97% 93% 91% 99% 99% 99% 99% 29% 99%
Deep Learning Accuracy 99% 93% 96% 93% 94% 99% 99% 99% 99% 96% 99%
Logistic
Regression F1 0.41 0.61 0.11 0.71 0.30 0.45 0.41 0.44 0.43 0.12 0.51

KNN F1 0.43 0.59 0.21 0.73 0.28 0.45 0.48 0.45 0.48 0.39 0.57
SVM F1 0.41 0.63 0.27 0.73 0.28 0.43 0.44 0.47 0.49 0.24 0.76
Naive Bayes F1 0.40 0.60 0.09 0.70 0.27 0.37 0.39 0.42 0.40 0.09 0.79
Decision Trees F1 0.41 0.60 0.20 0.69 0.29 0.17 0.45 0.46 0.44 0.11 0.46
Random Forest F1 0.43 0.59 0.33 0.62 0.31 0.42 0.44 0.49 0.49 0.41 0.84
XGBoost F1 0.41 0.60 0.33 0.63 0.35 0.45 0.45 0.50 0.48 0.47 0.86
Deep Learning F1 0.45 0.63 0.22 0.62 0.32 0.47 0.51 0.47 0.48 0.26 0.89

Table V: List of symbols used in optimization problem formulation.

Symbol Description Symbol Description
U Set of all UEs u Any user u ∈ U
Uc Set of UEs with EN-DC

configuration
Ua Set of EN-DC activated

UEs
δu5R 5G RSRP of u θB1 5G RSRP threshold
δu4R 4G RSRP of u θ4R 4G RSRP threshold
δu5S 5G SINR of u θ5S 5G SINR threshold
δu4S 4G SINR of u θ4S 4G SINR threshold
∆u [δu5R, δ

u
4R, δ

u
5S , δ

u
4S ] Θ [θB1, θ4R, θ5S , θ4S ]

∆u,4 [δu4R, δ
u
4S ] ∆u,5 [δu5R, δ

u
5S ]

α EN-DC Activation func-
tion

ζ Potential RLF AI-Model

β RLF function η Potential Muting AI-
Model

γ Muting function - -

of potential RLF and no RLF, respectively. The output of the
potential RLF AI-model is represented as ζ(∆u). We consider
the output of potential RLF AI-model for both 4G and 5G
settings as the UE will experience RLF if either of the 4G or
5G RF conditions are bad.

Similarly, for the set of UEs requiring voice services, the
number of muting instances γ can be written as:

γ(∆u, η, Ua) =
∑
u∈Ua

max
(
η(∆u,4), η(∆u,5)

)
(5)

where the potential muting AI-Model η takes in ∆u as input
and outputs a prediction of 1 or 0 representing the occurrence
of potential muting and no muting, respectively. The output
of the potential muting AI-model is represented as η(∆u).

Operators can increase EN-DC activations by configuring
lower values of EN-DC thresholds Θ. However, this can lead
to RLF or voice muting after EN-DC activation, rendering
the dual connectivity procedure useless. Keeping in view this
tradeoff, the optimization problem in subsection IV-B and
IV-C is formulated to achieve maximum utility and resource
efficiency.

B. RLF Aware EN-DC Optimization

We formulate a multi-objective optimization problem such
that it maximizes EN-DC activations while minimizing the
chances of RLF occurrences. This RLF aware EN-DC opti-
mization function is given as:

argmax
Θr=[θrB1,θ

r
4R,θ

r
5S ,θ

r
4S ]

αw

β(1−w)

subject to θrB1,low ≤ θrB1 ≤ θrB1,high,

θr4R,low ≤ θr4R ≤ θr4R,high,
θr5S,low ≤ θr5S ≤ θr5S,high,
θr4S,low ≤ θr4S ≤ θr4S,high,
w < 1.

(6)

where w is the operator defined weight that can be used
to adjust the relative importance of EN-DC activations (α),
and RLF (β). θrB1, θr4R, θr5S and θr4S are the optimization
variables for RLF aware EN-DC activation. The first four
constraints limit the parameters in the 3GPP defined range.
The range of optimization variables and constraints indicate
that (6) is a large-scale non-convex NP-hard problem due to
the inherent coupling of optimization parameters and the EN-
DC requests. Non-convexity stems from the fact that we are
dealing with four integer metrics (RSRP and SINR of 4G and
5G) in a heterogeneous multi-RAT network deployment, where
the randomness in UE location and resource requirement
result in variable cell loads that affect 4G and 5G SINR
metrics differently. In addition, the 4G and 5G RSRP also
change with the distance from the BS, however, non-uniform
BS deployment along with user mobility makes RSRP non-
deterministic.

C. Voice Muting Aware EN-DC Optimization

As voice users require low-latency and jitter-free com-
munication unlike FTP/HTTP users, network operators can
configure a different sets of mobility parameters for UEs
with active voice bearers. This allows operators to keep the



Figure 10: Proposed smart EN-DC activation framework.

UE undergoing a voice call in good radio conditions, and
other factors like load balancing and handover rate are given
less priority. To enable intelligent exploitation, we design a
separate optimization problem for the voice UEs. The EN-DC
activation parameters returned by the voice muting aware EN-
DC optimization problem will be used to configure only voice
UEs. The multi-objective optimization for voice muting aware
EN-DC activation can be formulated as follows:

argmax
Θm=[θmB1,θ

m
4R,θ

m
5S ,θ

m
4S ]

αw

γ(1−w)

subject to θmB1,low ≤ θmB1 ≤ θmB1,high,

θm4R,low ≤ θm4R ≤ θm4R,high,
θm5S,low ≤ θm5S ≤ θm5S,high,
θm4S,low ≤ θm4S ≤ θm4S,high,
w < 1.

(7)

where w is the operator defined weight that can be used
to adjust the relative importance of EN-DC activations (α),
and muting (γ). θmB1, θm4R, θm5S and θm4S are the optimization
variables for voice muting aware EN-DC activation and the
first four constraints keep their values in the 3GPP defined
range.

V. PROPOSED SMART EN-DC ACTIVATION FRAMEWORK
AND SIMULATION RESULTS

Fig. 10 illustrates the high level overview of the proposed AI
powered EN-DC activation framework. We develop a cascaded
2-stage AI model where stage-1 works to predict RLF while
muting prediction is done by the second stage. The predictions
obtained from stage-1 are used alongside actual voice muting
samples obtained from real world measurements. Finally, the
second stage AI model is trained to predict potential voice
muting. Next, the optimization agent evaluates the objective
function in the multi-objective Key Performance Indicator
(KPI) optimization problem formulated in the previous section.
This is done keeping in view the operator defined weightage
to the number of EN-DC activations and the number of
RLF/mute. As the problems in (6) and (7) are non-convex, they
can be solved using brute force (BF) algorithm. However, the
large convergence time of brute force is not suitable for time

sensitive problems of RLF, and muting explored in this paper.
Heuristic optimization algorithms can be explored to deal with
the large convergence time of BF. The conventional algorithms
such as greedy algorithm can produce a local optimal solution
but sometimes may fail to produce global optimal solution. In
this backdrop, we analyze genetic algorithm for solving eq. (6)
and (7)), which though known to be less efficient compared to
simpler greedy algorithm has higher chances of converging to
global optima in iterations considerably less than the BF. In
future extension of this study where more advanced objective
function with many more KPIs and constraint will be con-
sidered, an extensive investigation of optimization algorithm
might be needed to find the most suitable solution approach.

Our analysis reveals that GA can converge faster than
the BF approach, which makes the solution agile [38]. The
faster convergence is particularly useful for rapidly changing
network conditions. As illustrated in Fig. 10, the optimization
agent iteratively gets the RLF/muting prediction from the
AI engine for given EN-DC Configuration and Optimization
Parameters (COPs), and the optimal COPs that yield the
maximum utility function are obtained.
A. Simulation Setup

As discussed in earlier sections, the AI models for RLF and
mute detection are developed from the insights drawn from
the data preprocessing, model building, and testing process,
and these models are based on real network data. However,
as operators do not allow to experiment on a live commercial
network, we evaluate the performance of our proposed EN-DC
activation framework using the simulated data obtained from
a state-of-the-art 3GPP compliant simulator called Synthetic-
NET [39]. SyntheticNET is chosen as it has the key features
that are needed for this study but are missing in most other
simulators including 3GPP-based detailed HO and mobility
management.

A multi-RAT network with nine macro 4G eNBs each
having three sectors, and sixteen higher frequency omni direc-
tional 5G gNBs are deployed in a square of 25km2 area. LTE
eNBs are laid out uniformly in a grid form, while 5G small
cells are deployed randomly representing hotspot locations. A
total of 300 mobile UEs traverse the area following random
way point mobility model. The speed of the users is set to



Table VI: Simulation details for Smart EN-DC activation.

Technology 4G LTE 5G NR
Frequency 2.1GHz 3.5GHz
Cell Type Macro Cell Small Cell
Antenna Type Directional Omni
Number of Transmitters 27 16
Transmit Power 40dBm 30dBm
Base Station Height 30m 20m

Figure 11: Number of UE generated B1 reports (EN-DC activation
requests) against RSRP threshold.

120km/h and the simulations are run for 12,000ms (equivalent
to 12,000 Transmission Time Intervals ’TTIs’). After running
the simulation, using the RSRP range [-120dBm, -90dBm],
and the SINR range [-10dB, 10dB], we generate KPIs for a
total of 741,321 distinct combinations of the four optimization
parameters. More detail about the network configuration can
be found in Table VI.

UEs are configured to measure RF condition of 5G gNB
every 0.5s, and an event B1 measurement report is sent to the
MN if the B1 criteria are met. Fig. 11 shows the effect of
changing the B1 threshold on the number of B1 reports (EN-
DC requests), potential RLF, and potential mute occurrences.
Fig. 11 signifies the need for a smart EN-DC activation scheme
i.e., the importance of optimally assigning B1 threshold. An
incorrect B1 threshold may deteriorate retainability KPI or
integrity KPI through a large number of RLF instances, and
voice muting. Note that the legacy mobile networks use -
120dBm B1 RSRP threshold to maximize the 5G network
utilization without taking into consideration the ensuing QoE
degradation.

B. Performance Evaluation
We implement the proposed framework in SyntheticNET.

Table VII shows a comparison between GA and BF in solving
the optimization problem presented in (6). We also evaluate the
proposed framework and the robustness of GA to solve the op-
timization problem for different weights of EN-DC activation
and RLF. 1, 0.5, and 0 values of w correspond to the very
high importance of EN-DC activation, equal importance for
both EN-DC activation and RLF, and high importance for RLF,
respectively. It can be observed that GA converges 2212, 256,
and 133 times faster compared to the BF for the three cases,
respectively. The longer time needed for GA to find an optimal
solution for 2nd and 3rd case is intuitive as the solutions space
becomes more complex when EN-DC activation has to take
into account minimization of RLF and muting in addition to

Table VII: Optimal parameters obtained from GA for a UE with a
data call requirement.

w Algo Iterations Utility Optimal Parameters
Θr = [θrB1, θ

r
4R, θ

r
5S , θ

r
4S ]

1 BF
GA

741,321
335

1246.5
1225.5

-120dBm, -120dBm, -6dB, -7dB
-120dBm, -119dBm, -8dB, -6dB

0.5 BF
GA

741,321
2890

47.2
46.1

-112dBm, -118dBm, -3dB, -2dB
-112dBm, -118dBm, -7dB, -2dB

0 BF
GA

741,321
5543

2.2
2.1

-108dBm, -118dBm, -1dB, -2dB
-108dBm, -118dBm, -2dB, -2dB

Figure 12: Number of EN-DC activations and RLF observed when
using optimal parameters in Table VII.

maximizing the 5G network utilization only. The values of the
objective function and optimal parameters returned by GA and
BF for different weights indicate that GA can converge very
close to the optimal value.

We implement the optimal parameters reported in Table
VII in the SyntheticNET and observe the number of EN-DC
requests, EN-DC activations, and the potential RLF occur-
rences. Fig. 12 shows that the number of EN-DC requests,
EN-DC activations as well as the number of potential RLF is
highest for w=1 and all three of them decrease as the value
of w decreases. With w=1 in (6), the optimization function
maximizes EN-DC activations and disregard RLF. This is
shown in Fig. 12 where 1328 of the 6025 EN-DC activations
results in RLF. Existing mobile networks use the EN-DC
configuration that gives maximum weightage to the number
of EN-DC activations (w=1). Fig. 12 also shows that we can
reduce RLFs by decreasing w, and can totally eliminate the
chances of RLF with w=0. This however comes at ∼50% loss
of EN-DC activations. Thus, the proposed framework offers
a solution for 5G operators to optimize the tradeoff between
network utilization and QoE.

For w=0, the BF solution results in 3501 EN-DC requests
and 2413 EN-DC activations indicating that 1088 EN-DC
requests were not entertained due to chances of RLF from
poor RF condition. On the contrary, only 914 EN-DC requests
were rejected when the optimal parameters obtained from GA
were used which resulted in 2295 EN-DC activations.

Table VIII compares the performance of GA with BF for
solving the voice muting aware EN-DC optimization given in
(7). A similar trend is observed for voice muting aware EN-DC
optimization, where GA converges significantly faster than the
BF at the cost of a slightly less optimal objective function. Fig.
13 shows the number of EN-DC requests, EN-DC activations,
and potential muting instances when the optimal EN-DC



Table VIII: Optimal parameters obtained from GA for UEs requiring
voice call services.

w Algo Iterations Utility Optimal Parameters
Θr = [θrB1, θ

r
4R, θ

r
5S , θ

r
4S ]

1 BF
GA

741,321
969

1142
1130.4

-120dBm, -120dBm, -6dB, -7dB
-120dBm, -120dBm, -7dB, -10dB

0.5 BF
GA

741,321
5607

49
46.6

-115dBm, -110dBm, -5dB, -1dB
-115dBm, -110dBm, -10dB, 0dB

0 BF
GA

741,321
10987

2.2
2.1

-112dBm, -110dBm, 0dB, -1dB
-111dBm, -110dBm, -6dB, -1dB

Figure 13: Number of EN-DC activations and muting observed when
using optimal parameters in Table VIII.

parameters from Table VIII are deployed in SyntheticNET
with different weights. It is shown that zero chances of muting
instances can be achieved by assigning more weightage to
mute using w=0. However, since UE is more susceptible to
muting rather than RLF, zero mute occasions can be obtained
at the cost of even lower EN-DC activations (2085) compared
to the similar case with w=0 in Fig. 12.

VI. CONCLUSION

EN-DC mode addresses strict capacity requirements of
the UE by enabling dual-connectivity to 4G and 5G cells.
However, dual-connectivity can be beneficial only if it can be
retained for the required time duration.

Currently, no EN-DC mode selection scheme exists in the
literature that takes into account the risk of RLFs and voice
muting. In this paper, we propose a data driven framework
for intelligent EN-DC activation that can minimize RLF and
muting instances. The core idea of the proposed framework
is to use prior RSRP, SINR, RLF, and voice muting data,
gathered either through drive test or MDT reports to train
RLF and voice muting prediction models. These models are
then used as part of the objective function in an optimization
problem to determine optimal B1 threshold to determine EN-
DC activation criteria that can offer the desired trade-off
between utilization of 5G network and QoE deterioration
caused by RLF or voice muting.

A key challenge in building RLF and voice mute prediction
models from real data is extremely imbalanced training data,
as a number of RLF and voice muting events would be far
less compared to total observations. Our investigation of a
large number of data balancing techniques shows that different
techniques work best for different types of data. For example,
for RLF data where there is significant overlap between the
two (RLF and no RLF) classes, training data augmentation

techniques such as GAN that aim to increase the number of
samples in minority class by generating synthetic minority
samples, may worsen the situation. Instead, for such data, class
balancing techniques such as Tomek Link work best as they
tend to remove the samples from the majority class that are at
the boundary. On the other hand, for voice muting data, where
class imbalance might be even more extreme, but boundaries
are relatively less overlapping, GANs outperform all other
techniques. The performance evaluations of the proposed
solution, using a 3GPP compliant simulator shows that the
proposed scheme can be used to either totally eliminate RLF
and voice muting if a calculated reduction in EN-DC activation
can be tolerated, or it can be used to achieve any operator
policy based trade-off between the 5G network utilization and
risk of QoE deterioration caused by RLF or call muting.
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