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Abstract—The future of cellular networks is contingent on
artificial intelligence (AI) based automation, particularly for
radio access network (RAN) operation, optimization, and trou-
bleshooting. To achieve such zero-touch automation, a myriad of
AI-based solutions are being proposed in literature to leverage
AI for modeling and optimizing network behavior to achieve the
zero-touch automation goal. However, to work reliably, AI based
automation, requires a deluge of training data. Consequently, the
success of the proposed AI solutions is limited by a fundamental
challenge faced by cellular network research community: scarcity
of the training data. In this paper, we present an extensive review
of classic and emerging techniques to address this challenge.
We first identify the common data types in RAN and their
known use-cases. We then present a taxonomized survey of
techniques used in literature to address training data scarcity
for various data types. This is followed by a framework to
address the training data scarcity. The proposed framework
builds on available information and combination of techniques
including interpolation, domain-knowledge based, generative ad-
versarial neural networks, transfer learning, autoencoders, few-
shot learning, simulators and testbeds. Potential new techniques
to enrich scarce data in cellular networks are also proposed, such
as by matrix completion theory, and domain knowledge-based
techniques leveraging different types of network geometries and
network parameters. In addition, an overview of state-of-the art
simulators and testbeds is also presented to make readers aware
of current and emerging platforms to access real data in order
to overcome the data scarcity challenge. The extensive survey
of training data scarcity addressing techniques combined with
proposed framework to select a suitable technique for given type
of data, can assist researchers and network operators in choosing
the appropriate methods to overcome the data scarcity challenge
in leveraging AI to radio access network automation.

Index Terms—scarce data, training data, big data, emerging
cellular networks, RAN, machine learning, synthetic data gener-
ation, interpolation, simulators, testbeds

I. INTRODUCTION

Future cellular networks are envisioned to have big data
enabled network automation capabilities [1]. This includes
functionalities of self-optimization, self-healing and self-
configuration [2]- [3] that are essential to ensure the viability
and sustainability of future cellular networks amid challenges,
such as amalgam of new technologies, growing complexity,

resource inefficiency and shrinking profit margins. In order
to enable these automation capabilities in next generation
cellular networks, the process of heterogeneous base station
(BS) deployment, implementing existing and newly proposed
network features and tuning the associated network parameters
has to be meticulous. This is because the process of selecting
an optimal network configuration that can maximize the vital
key performance indicators, like coverage, capacity, reliability
or energy efficiency is a rather challenging task. Identifying
the optimal network configuration is necessary for network
operators to fulfill the promises made by much anticipated 5G
and beyond networks and to realize the efficacy of several new
use cases.

Research community heavily rely on mathematical yet
tractable analytical models [4]- [9] to propose planning, oper-
ation and optimization of different aspects of network. They,
however, are based on restrictive assumptions and simplifica-
tions with respect to transceiver architecture, base station and
user distributions and propagation characteristics, to name a
few. Furthermore, stochastic geometry-based models are un-
able to capture the network dynamics which include mobility
management and transmission latency. Therefore, several ma-
chine learning (ML) based techniques are proposed in current
literature that leverage training and tuning of ML based models
to determine the behavior of different configuration and op-
timization parameters (COPs), such as antenna tilt, transmit
power, cell load in relation to different key performance
indicators (KPIs), like coverage, capacity or energy efficiency
[10]- [12]. These COP-KPI relationships can then be used
for COP-KPI optimization. Moreover, in cellular networks
context, awareness about radio environment in a wireless
system is crucial given that the radio spectrum is a limited
resource [13]. Ample data is required for constructing radio
environment maps (REMs) which can be used for operations
such as spectrum management, to construct interference maps,
to make decisions about spectrum availability for enabling
dynamic spectrum access, for assessing/monitoring network
health, minimizing signalling, interference management, opti-
mization of radio resources allocation, dynamic spectrum allo-
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based categories (b) system/link level categories (figure is based on Table IV)

cation, identify bad-signal areas, automatic neighbor relation,
minimize drive tests, handovers optimization and coexistence
of various technologies [14]- [15]. However, all such tech-
niques face a common key challenge that undermine their
utility: scarcity/sparsity of the training data. This fundamental
problem has two facets: (i) Data scarcity: Obtaining large
amounts of pertinent training data from the operators is not a
trivial task. Furthermore, as most of the data remain trapped
in silos, even if willing, a single operator may not be able to
provide the deluge of real data needed for developing models
e.g., user (traffic, mobility pattern, QoE expectations) and
network behavior (spatio-temporally robust COP-KPI) mod-
els. (ii) Data sparsity: Network operators only try a limited
range of COPs in live networks due to high probability of
significant network performance impairment of live mobile
network during the trial phase. Therefore, only a limited range
of COP-KPI data can be obtained. Given that operators only
try a limited range of COPs in live networks, despite sourcing
from multiple operators, even when not scarce, the real data
are expected to be sparse or unevenly distributed. In other
words, term scarcity refers to problem when data is too little
to train a model. Sparsity on the other hand refers to problem
when there is some data, but it is thinly or unevenly distributed
making reliable training of AI difficult. For sake of clarity,
in rest of the manuscript we use only one term, scarcity to
represent this problem irrespective of the reason behind data
being not enough to train AI.

To illustrate the type of data in cellular networks which
is scarce, Fig. 1 shows the data on which data augmentation
techniques have been applied in literature according to OSI
layers and system/link level categorization. Link level data
corresponds to the point-to-point communication link, for
example RSRP, and system level data takes the notion of
data involving a large number of network elements including
several links, for example REM. The use cases of these data
are elaborate in later sections and are summarized in last two
columns of Table IV.

To address the data scarcity challenge, one solution can
be to obtain data from field trials. However, conducting

independent field trials on a large scale is costly and time-
consuming, especially in dynamic scenarios, where the number
and locations of measurements change, and it is infeasible
to measure the radio frequency field strength values at every
point of interest. Another way to obtain data is through
mathematical models. However, they are based on too many
assumptions and simplifications, that fail to depict real world
scenarios. Moreover, in ultra-dense deployments, small cells
contain far fewer users compared to macro cells. This makes
user measurements at the base station of small cells scarce,
which particularly poses a problem for automation solutions
that leverage minimization of drive test (MDT) [16]- [18].
This problem is further aggravated if smaller bin size is used
to reduce quantization error, attributing to the fact that many
bins might not be visited by even a single user during the
reporting period [18].

Deploying the new 5G and beyond network functionalities
in a real world cannot be done arbitrarily. If the training
data is poorly distributed or scarce, it might not represent the
actual network scenario very well, which could lead to over-
fitting during the model training stage. In order to develop
accurate models, machine learning algorithms require large
amounts of true training data since a model based on scarce
data would rely on assumptions and weak correlations [19]. In
turn, unscrupulous network design and sub-optimal parameter
configuration will hamper not only the capability of future
networks that will impact the user experience negatively but
will also increment the capital and operational expenditure
(CAPEX/OPEX) of mobile operators [20].

A. Related Work

Data scarcity challenge has been addressed in the domain of
environment sciences field, such as ecology, marine, agricul-
ture, soil science, elevation, precipitation, and chemical con-
centrations, through review papers in [21]- [24]. However, to
the best of authors’ knowledge, a survey paper on addressing
the training data scarcity challenge in cellular networks is not
present.
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In cellular networks context, the closest survey papers to
this work are [25], [26] and [27]. Authors in [25] focus
on the task of radio environment map (REM) construction
techniques. Advantages, disadvantages, and asymptotic com-
plexity comparison of seven interpolation techniques (inverse
distance weighted, nearest neighbor, spline, natural neighbor,
modified Shepard’s method, gradient plus inverse distance
squared method and Kriging). They also discuss some in-
direct construction methods that combine interpolation with
transmitter parameter information. However, since work in
[25] is from 2014, many indirect methods developed after
2014 are not covered in it. Moreover, [25] is limited to the
task of REM construction only. Several methods that have
gained popularity in past recent years to enrich scarce data,
like advanced machine learning techniques and synthetic data
generation, that are a part of this survey, are also not included
in [25].

The other relevant study to this work is the study in [26],
where authors survey the use of interference maps. However,
the study in [26] focuses on spectrum occupancy measurement
data only while reviewing studies till 2016. In contrast, in
this survey, we cover variety of RAN data. Like [25], popular
methods in recent years to augment scarce data, like advanced
machine learning techniques and synthetic data generation are
also not included in [26] as addressing data scarcity problem
is not the focus of the work in [26].

Simulators are another promising way to address the data
scarcity challenge. Two existing surveys on simulators include
[28] and [29]. Authors in [28] compare 4G and 5G simulators
and authors in [29] provide a summary of the most significant
5G simulators. However, these works are restricted only to
simulators as a tool for generating data.

Testbeds can also be used to generate real data to augment
available scarce data. The work in [30] compares key testbeds
around the world in terms of location, scale of deployment,
type of access, key features, and supported experiments. How-
ever, these works are restricted to testbeds only, whereas this
survey aims to address data sparsity challenge by considering
additional techniques as identified in Fig. 2.

A more recent study from 2019 [27] surveyed the applica-
tions of deep learning-based techniques, like transfer learning,
autoencoders, generative adversarial networks techniques for
wireless networks. The authors introduce the basics of deep
learning and then identify wireless applications where those
techniques can be used, for instance, mobile data analysis,
mobility analysis, wireless sensor network, network control,
network security, signal processing, and other emerging wire-
less applications. While some of the techniques discussed in
[27] can also be exploited to address data scarcity challenge
in RANs to some extent for limited data types, the work in
[27] is not focused on addressing the training data scarcity
challenge in RAN. In contrast, this survey not only provides a
comprehensive review of techniques that can address training
data sparsity for a variety of RAN data but also it provides
the first of its kind systematic framework to select the most
suitable techniques for given data types.

To the best of authors’ knowledge, there is no existing work
that presents a consolidated survey and framework that aims to

solve the training data scarcity challenge in cellular networks.
This article presents the techniques in literature to address
the training data scarcity problem over the period of 1991
to 2021 as they apply to radio access networks in wireless
communications.

B. Contributions and Organization

The key contributions in this paper can be summarized as
follows:

• To address the training data scarcity challenge, we present
an overview of existing techniques, and potential new
and emerging techniques, such as matrix completion
theory (Section II-A) leveraging different types of net-
work geometries (Section III-A), and advanced machine
learning techniques such as the use of generative ad-
versarial networks (GANs) (Section IV-A), autoencoders
(Section IV-B), transfer learning (Section IV-C) and few-
shot learning (Section IV-D) to enrich scarce data in
cellular networks. We also highlight the pros and cons
of these approaches analyzed in context of different
RAN focused use cases. A taxonomy of training data
enrichment techniques is developed by grouping these
techniques into various categories as shown in Fig. 2.

• We present a comparison of existing and emerging sim-
ulators (Section V-A) as tools for generating synthetic
data to overcome the data scarcity issue which can greatly
benefit researchers as the characterization and comparison
among features of different simulators will enable them
to identify publicly accessible simulators and use them
for their specific problems.

• An overview of state-of-the-art current and emerging
testbeds for next generation cellular networks is presented
in Section VI-B that will make readers aware of current
and emerging platforms to access real data in order to
overcome data scarcity challenge. Most of these testbeds
are available to external experiments, which will foster
collaboration among different academic institutions as
well as with industry. This will in turn enable the utiliza-
tion of these existing facilities to the fullest and accelerate
quality research in the field of cellular networks.

• We propose a decision tree diagram, that will enable
researchers and operators to choose appropriate methods
to solve the training data scarcity challenge, based on the
available information and network scenario.

It should be noted that measured data can be scarce and
still be representative. On the other hand, data can be big
but not representative. We begin by presenting an overview
of techniques that will work best in the first case. In the
case when data is scarce and representative, but the only
information known are the measured data points and their
location, interpolation methods in Section II are likely to
perform best.

Moving forward, when some additional information beyond
the data points and their locations is known, we can utilize the
methods using contextual information or domain knowledge
in Section III. Several machine learning techniques can also
be leveraged to address the data scarcity challenge. These
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Fig. 2: This figure presents one possible taxonomy for classifying the techniques to address data scarcity in RAN.

include generative adversarial networks, autoencoders, transfer
learning and few-shot learning techniques (Section IV).

On the contrary, when the available data is big and non-
representative or scarce and non-representative, the solution
lies in either resorting to generate synthetic data (Section V)
or get real data (Section VI). In addition, for scenarios with no
starting real data, for example, for new or anticipated scenarios
which are not yet deployed in a real network, simulators, and
testbeds to generate real data are most likely going to be the
best option for wireless communications community.

Other classifications of data augmentation techniques, such
as those based on OSI layer based, or system and link level
grouping of the data streams are also possible. However,
many data scarcity techniques can be applied to the data
corresponding to multiple layers and levels. Therefore, the
rest of the paper is structured by organizing the techniques
based on their technical grouping as shown in this tree
diagram. i.e., each branch represents a section, and each
leaf represents a subsection of the paper. Moreover, while
it is intuitive to assume that data from different layers may
require different generation techniques, but the suitability of a
technique depends mainly on the characteristics of the data
e.g., availability of latent distribution, completeness, repre-
sentativeness, temporal or spatial nature and context and so
on. For example, traffic variation at base station data at the
application level can be modelled as time series data, and
same can be done for the packet error data at link level,
and bit error data at physical layer. Similarly, data on traffic
variation in space (system level data) bears similarity with,
for instance, RSRP/SINR-based REM data (physical layer)
and thus same techniques such as kriging, inverse distance
weighted, nearest neighbor interpolation can be used. While
in most cases, the characteristics and contexts of the data may
suffice to choose the best technique, in some cases, additional
knowledge that can be extracted from knowing which layer
the data belongs to may be helpful in improving the data
augmentation. However, so far in literature there does not

exist examples of where knowledge of layer level mapping
is exploited for data augmentation.

II. INTERPOLATION METHODS

When the only information required from cellular network
are the measurement values (location-value pair) in order
to recover the missing values, we classify such methods
as ‘interpolation methods’, which assume that the data are
spatially dependent and continuous over space [31]–[33].

Interpolation methods are widely used in literature for radio
environment map (REM) augmentation. REM for a coverage
area consists of radio information, such as signal strength,
signal quality or interference [25]. Constructing REMs is done
through manual drive tests, which leads to collection of data
from scarce locations due to time and cost constraints. REM
supports a variety of use cases, such as spectrum access
management, identification of poor signal areas, automatic
neighbor relation, power management, interference mitigation
and management, optimization of radio resources allocation,
radio resource management, dynamic spectrum allocation,
handovers optimization, automated networks planning, mainte-
nance and optimization of network parameters [25]. Therefore,
complete REMs from the available scarce REMs are required
to support these use cases.

Another type of widely used data on which interpolation
techniques are applied is the minimization of drive test (MDT)
data [34]. 3GPP has standardized MDT that allows network
performance estimation at a base station by leveraging mea-
surement reports gathered at the user equipment (UE) without
the need for drive tests [35]. The MDT reports contain net-
work coverage related performance indicators (such as RSRP)
measured at the UE. These reports are tagged with UEs’
geographical location information and sent to their serving
base stations [18]. MDT data can be scarce in areas of low user
density, which will lead to inaccurate or sub-optimal coverage
estimation models [34]. To address this problem, authors in
[34] applied several interpolation algorithms, including the
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ones discussed in this section. Their results are illustrated in
Fig. 3 and will be discussed further in the subsection pertaining
to data enrichment technique used in each of the subfigures.

Different interpolation techniques can be applied in the
cellular network context to address the data scarcity challenge.
Each technique has its own set of advantages and disadvan-
tages; we elaborate these techniques in this section.

A. Matrix completion theory

A recent work [34] applied matrix completion theory to
cellular network data context. Assuming the coverage area is
divided into bins, a coverage matrix C containing coverage
indicator (such as RSRP measurements) is observed. A scheme
that jointly exploits matrix factorization theory and convex
optimization is used to recover the missing data in C [34].
This leads to the following optimization problem in order to
find the missing values in matrix C:

minimize rank{P }
subject to Pij = Cij (i, j) ∈ Ψ (1)

where P is the decision variable in the optimization problem,
the pair (i, j) denotes the i-th row and j-th column of the
matrices Cand P and Ψ is the set of locations corresponding
to the observed entries ((i, j) ∈ Ψ if Cij is observed).
However, the problem in (1) is known to be not only NP-
hard, but also all known algorithms that provide exact solutions
require time doubly exponential in the dimension n in both
theory and practice [36]. However, the analysis presented in
[36] proves that the coverage values in vacant bins can be
obtained with high accuracy by solving the following alternate
convex optimization problem:

minimize ||P ||∗
subject to Pij = Cij (i, j) ∈ Ψ (2)

where ||P ||∗ is the nuclear norm and is given as:

||P ||∗ =

n∑
k=1

σk(P ) (3)

In (3), σk(P ) denotes the kth largest singular value of P . (2)
therefore aims to determine the matrix with minimum nuclear
norm that fits the data.

The problem in (2) can be solved with the singular value-
based threshold (SVT) algorithm presented in [37]. The SVT
algorithm solves the following problem:

minimize η||P ||∗ +
1

2
||P ||2F

subject to OΨ(P ) = OΨ(C) (4)

where OΨ is the orthogonal projector onto the span of matrices
vanishing outside of Ψ so that the (i, j)th component of
OΨ(P ) is equal to Pij if (i, j) ∈ Ψ and zero otherwise.
It is shown in [37] that the solution of the problem of (4)
converges to that of (2) as η → ∞. The SVT algorithm is
iterative and produces a sequence of matrices {P ,Q}. At
each step, a soft-thresholding operation is performed on the
singular values of the matrix Qt. Thus, by selecting a large

value of the parameter, η in (4), the sequence of iterates, {P t}
converges to a matrix which nearly minimizes (2). Starting
with Q0 = 0 ∈ R(n×n), the algorithm inductively defines

P t = shrink(Qt−1, η) (5)

Qt = Qt−1 +∆iOΨ(C − P t) (6)

where {∆i}, i ≥ 1 is a sequence of scalar step sizes, until a
stopping criteria is reached. The shrink function in (5) applies
a soft-thresholding rule at level η to the singular values of the
input matrix. It is defined as

shrink(Qt−1, η) = Sη(Qt−1) := USη(Σ)V ∗ (7)
Sη(Σ) = diag({(σk − η)+}) (8)

where f+ = max(0, f). Equivalently, this operator is the
positive part of f and simply applies a soft-thresholding rule to
the singular values of P , shrinking them towards zero. U ,V
are matrices with orthonormal columns and the singular values
Σ are positive. U ,V and Σ are obtained from the singular
value decomposition of matrix P of rank r:

P = UΣV ∗, Σ = diag({σk}), 1 ≤ k ≤ r (9)

In case of the presence of random shadowing in the model, the
stopping criteria of the algorithm can be modified as follows:

||OΨ(P
t −C)||2F ≤ (1 + ζ)mϕ2 (10)

where ζ is a fixed tolerance. The SVT algorithm is stopped
when P r is consistent with the data and obeys (10). Therefore,
the reconstruction matrix, Ĉ is the first P t obeying (10).

Another similar rank minimization based algorithm used
to recover the matrix C is the fixed point continuation
(FPC) algorithm [38]. While SVT is efficient for large matrix
completion problems, it only works well for very low rank
matrix completion problems. For problems where the matrices
are not of very low rank, SVT is slow and not robust and
therefore, often fails [38]. To solve this problem, FPC-based
algorithm is proposed in [38]. FPC-based algorithm has some
similarity with the SVT algorithm in that it makes use of
matrix shrinkage as in (5)-(8). However, it solves (4) by
leveraging operator splitting technique [39].

Authors in [34] use matrix completion for the task of
interpolating missing RSRP values from MDT-based data. Fig.
3 (e)-(f) is an illustrative example of their result. Authors in
[34] conclude that this scheme is more likely to work well in
small cells environments since matrix C will naturally be low
ranked in such scenarios. This observation stems from the fact
that propagation conditions are mostly dominated by line of
sight in small cells and the standard deviation of shadowing is
generally small. Moreover, the shadowing phenomenon that
heavily determines coverage values, particularly in a small
cell environment, remains correlated over small distances that
separate users in the same small cell. However, the network
scenario they consider consists of macro cell environment,
therefore, the application of matrix completion to small cell
environments needs further investigation.
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Fig. 3: Comparison of coverage map reconstruction techniques [34].

B. Inverse distance weighted

In this section, we first discuss the simplest form of inverse
distance weighted (IDW) method, the simple IDW. Then we
highlight several improvements in simple IDW interpolation
and finally present an adaptive IDW method from literature.

1) Simple IDW: The simplest form of IDW method is also
known as the Shepard’s method. It is based on the assumption
that the distribution of signal samples is strongly correlated
with distance. To estimate the missing received signal strength
value, ĉ (at a particular bin location, D) in the matrix C,
weighted average of N known signal strength values, ck from
N adjacent bins are used, where k = 1 . . . N . Each known
received signal strength value is weighted with a weight that
is equal to the inverse of distance, dk = d(D,Dk) between
the location of the bin with missing RSRP value and location
of the k-th bin and raised to the power p. Mathematically, the
missing received signal strength value is calculated as:

ĉ =


∑N

k=1
1

d
p
k

ck∑N
k=1

1

d
p
k

if dk ̸= 0

ck if dk = 0

(11)

The choice of p is an important parameter in this method.
For p < 1, ĉ remains no longer differentiable. Therefore,
the exponent has to exceed 1 for the interpolation function
to remain differentiable with respect to spatial coordinates
(Cartesian coordinates x and y that are used in distance
calculation) [40]. It is shown by empirical testing that higher
exponents tend to make the surface flat near all data points and

the gradients over small intervals between data points are very
steep. On the other hand, lower exponents tend to produce a
relatively flat surface with short blips to achieve appropriate
values at data points [40]. When p = 0 in (11), the missing
coverage value is set equal to the weighted arithmetic average
of the neighboring coverage values and the recovery method
is often termed as the ‘moving average method’.

Simple IDW method’s disadvantages are that it leads to
the production of the “bull’s-eyes” effect, it is sensitive to
measurement outliers, it introduces significant errors in case
of non-uniform distribution measurements or unevenly dis-
tributed data clusters, computational error becomes highly
significant in the neighborhood of a data point, the calculation
of missing value increases proportionally with the number
of data points, leading to inefficiency of the method when
the number of data points is large. Also, there is no way of
pre-determining the optimal weighting power factor that will
construct the most accurate RF-REM. The appropriate search
radius also needs to be optimized. Another drawback is the
lack of directionality, i.e., different configurations of co-linear
points could yield the same results, attributing to the fact that
only the distances from the missing location to the points with
known locations are considered and not their direction [25],
[40].

However, the advantages of simple IDW method include its
efficiency and ease of comprehension since it is intuitive. This
interpolation works best with evenly distributed points.

An illustrative example of IDW for REM interpolation using
MDT-based RSRP measurements is shown in Fig. 3 (f). It can
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Algorithm 1: Singular value thresholding algorithm
for finding missing coverage values

Input : sampled set Ψ and sampled entries OΨ(C) ,
tolerance ζ, parameter η, step size ∆,
increment α, number of maximum iterations,
IM , shadowing standard deviation ϕ, and
cardinality of Ψ , m

Output: P opt

1 Set Q0 = i0∆OΨ(C)
2 Set τ0 = 0
3 for t = 1 to IM
4 Set ht = τt−1 + 1
5 repeat
6 Compute [U t−1,Σr−1,V t−1]ht

7 Set tt = ht + α
8 until σt−1

ht−α ≤ η

9 Set τr = max{j : σt−1
j > η}

10 Set P t =
∑τr
j=1(σ

t−1
j − τ)ut−1

j vt−1
j

11 if ||OΨ(P
t −C)||2F ≤ (1 + ζ)mϕ2 then break

12 Set

Qtij =

{
0 if (i, j) ̸∈ Ψ

Y t−1
ij +∆(Cij − P tij) if (i, j) ∈ Ψ

13 end for t
14 Set P opt = P t

be seen from the figure that although techniques like kriging
in Fig. 3 (j) outperform IDW in terms of accuracy of REM
construction, IDW does outperform several techniques like
moving average in Fig. 3 (c) and is usually preferred for its
reduced computational complexity. IDW has been widely used
for REM construction in outdoor environments, such as in
[34], where authors use RSRP data to complete scarce REM
using IDW. Results in [41] also favor the adoption of IDW
for REM construction in a device-to-device network crowd-
sourcing scenario consisting of Nakagami-m and Nakagami-
lognormal channels.

2) Improved IDW: In order to address the drawbacks of
simple IDW method in the preceding subsection, several
improvements have been suggested in literature.

The focus of the work in [42] is on the reliable estimation of
radio interference field with small number of measurements.
For this purpose, different variants of IDW spatial interpolation
method are employed which have proven robustness when
dealing with limited number of observations [42].

Authors in [43], [40] and [44] improve the weighting
function by proposing a framework to intelligently select the
nearby data points to be used in predicting the missing data
point. This approach is developed keeping the overall density
of the data points into consideration.

Authors in [40] incorporate a direction factor, in addition to
the distance factor in defining the weights. This direction factor
is based on the cosine of angle of DiDDj , where i ̸= j and
i, j = 1 . . .K. If other data points Dj are in approximately the
same direction from D as Di, then the angles, 1−cos(DiDDj)
are close to 0. On the other contrary, if other data points are

in the opposite D from Di, then the angles 1− cos(DiDDj)
are close to 2. The direction factor in the improved weighting
function in [40] leverages this fact.

Other improvements to simple IDW involve reduction of
computational complexity and errors and making features
of the interpolation function desirable, i.e., ensuring non-
zero gradients at every location to achieve the desired partial
derivatives for the function to remain differentiable [45], [40].

Since simple IDW assumes that the distance decay is
uniform throughout the entire study area, it does not perform
well in case of clustered data or data that depicts spatial
variability. To address this problem, authors in [46] suggested
an improvement based on the weighted median of data in the
neighborhood of missing data point. The weighting function
in [46] is a function of inverse-distance weights and the de-
clustered weights that include the effects of distance and
clustering among spatially correlated data in the estimator.

In order to increase the accuracy of predictions through the
IDW method, authors in [47] proposed the use of piecewise
least-square polynomial regression estimators to increase the
accuracy, after evaluating fifteen different estimators using an
extensive evaluation data set.

For reducing the “bull-eye” effect in simple IDW method,
a distribution-based distance weighting (DDW) technique is
used [44]. Weight calculations in DDW method are based
on appropriate distributions according to available data, such
as Gaussian, Lorentzian and Laplacian distributions. Such a
distribution-based calculated ensures that if data variations
are very small, then the distribution will have a fairly sharp
peak and will cause the weighting to be more sensitive to the
distance. On the contrary, if data included in the interpolation
are more spread out, a distribution with a larger variance would
be a good choice and this would result in the distances having
less impact on the weight calculations.

Authors in [44] and [48] propose another improvement to
the IDW-based method, that incorporates temporal dimension
in addition to spatial dimension. Although these approaches
are evaluated in the context of environmental data, such an
approach can also be applied to wireless network data. In
the approach in [44], time is treated independently from the
spatial distance dimension and weights are calculated in two
steps: using the inverse of 2D-spatial distance, followed by
the inverse of the 1D-temporal distance [44]. Authors in
[48] assume second-order non-stationarity of both spatial and
temporal distributions of the data, based on which they treat
the space-time variables in their proposed method as a sum of
independent spatial and temporal non-stationarity components.
Heterogeneous covariance functions are constructed to obtain
the best linear unbiased estimates in spatial and temporal
dimensions [48].

The applications of improved IDW techniques for cellular
network data are far less common than their application to
the environmental modeling/geoscience domain [44], [47],
[48]. In wireless networks context, the study in [42] used
improved IDW accounting for the direction, the number and
set of considered neighboring points and the slope of the
interpolation function, for radio interference field estimation
based on distributed spectrum use measurements. It concluded
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TABLE I: Improvements to IDW interpolation.

Improvement References
Intelligent selection of data in

neighborhood
[43], [40], [44]

Addition of directionality [40]

Reduction of computational complexity [43], [40], [44], [45],
[40]

Reduction of computational errors [45], [40], [47]

Addition of desirable features [45], [40]

Extension to clustered/non-uniformly
distributed data

[46]

Addition of temporal dimension [44], [48]

Reduction of “bulls-eyes” effect [44] [25]

that as compared to classical IDW, improved IDW experiences
lower variance of mean absolute error but had more outliers
[42].

3) Adaptive IDW: The IDW method assumes that the
distance-decay structure is uniform throughout the entire study
area. However, recognizing the potential of varying distance-
decay relationships over area, authors in [45] proposed a
variation in the value of weighting parameter, p according to
the spatial pattern of sampled points in the neighborhood using
information derived from empirical data. Intuitively, when the
unsampled location has highly clustered points around its
neighborhood, a small p is appropriate so that the nearest
sampled values will not have an overwhelming influence on
the estimated value. On the contrary, a large p is desirable
when data is spatially dispersed since the more reliable source
for the estimate will likely be influenced from the closest
location, therefore, if a small p value is used in this case,
the contributions from local and more reliable sources will be
small, resulting in less reliable estimates [45].

In order to adjust p according to the spatial pattern of known
data, authors in [45] first quantify the spatial pattern of sample
locations in the form of nearest neighbor statistic:

R = ro/re, re =
1

2(M/A)0.5
(12)

where re and ro are the expected and observed average
nearest neighbor distances respectively and A is the area under
consideration.

After normalizing R to get the normalized local nearest
neighbor statistic, µR, in the adaptive IDW method, this
neighbor statistic carries a fuzzy membership that belongs to
certain categories of p. This membership function is depicted
in Fig. 4. As an example, µR corresponding to R of 0.8 will
be 0.35, yielding two points in the membership degree (0.3
for category C and 0.7 for category B). The final p would
then be a weighted sum of these membership degrees and
corresponding p values (0.5 for category B and 1 for category
C). Consequently, the final p will be: 0.7×0.5+0.3×1 = 0.65.

Adaptive IDW (AIDW) method can outperform IDW and
work well in situations where local variability is relatively
large or spatial correlation structure of the data is not strong
or data is too limited to support data intensive methods, such as
kriging. It is shown to outperform ordinary Kriging, when the
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Fig. 4: Triangular membership function for different adaptive
distance-decay parameters (modified from [45]).

spatial structure of data was such that it could not be modeled
accurately by a variogram function [45].

However, as compared to IDW, the AIDW method is
computationally intensive as the distribution of p has to be
formulated to find the optimal set of parameter values, which
require significant level of heuristics [45].

C. Gradient plus inverse distance squared

Gradient plus Inverse Distance Squared interpolation
(GIDS) combines multiple linear regression and inverse dis-
tance based weighted coefficients for the interpolating missing
data. By assuming that the data of interest can be represented
by a multivariate function, for the unsampled location, D, an
ordinary least squared regression is done using N neighboring
locations. This yields the coefficients which represent the
location gradients. If the measurements are taken at different
heights, GIDS method can incorporate the elevation dimension
in interpolation too. Assuming D = (x, y, z) with correspond-
ing coefficients Cx, Cy, Cz , representing the x, y, z gradients
respectively, the missing data point through GIDS can be
estimated as [49]:

ĉ =

∑N
k=1 (ck + Cx(x− xk) + Cy(y − yk) + Cz(z − zk)) /d

2
k∑N

k=1 1/d
2
k

(13)

The advantage of GIDS method is its ability to account
for signal level gradients and elevation of the terrain at the
interpolated location and at locations of the measurements.
However, this method is very sensitive to the selection of
neighborhood points as a small neighborhood selection would
leave out important measurements and a large neighborhood
selection may introduce noise [25].

GIDS has been used for REM construction in [49], where
authors conclude that when number available measurements
are sufficient, then Kriging outperforms GIDS in terms of
lower relative mean absolute error in most REM simulation
scenarios. Note also that Kriging is highly sensitive to the
performance metric used as it minimizes mean squared error
(MSE), so performs best when MSE is used as evaluation
metric.

D. Modified Shepard’s method

The IDW based modified Shepard’s method (MSM) is a
local interpolation that makes the estimation based on a real
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multivariate function, f , whose local approximation is referred
to as nodal functions. If Qk is the output of the nodal function
of the data point Dk (local approximation to f at xk, yk), then
the missing value using the MSM method can be written as
a weighted average of the nodal functions within some radius
influence (about the missing data point), Rw in the following
manner [49], [42]:

ĉ =

∑N
k=1WkQk∑N
k=1Wk

(14)

First, the weights, Wk are calculated by the following formula:

Wk =

{
[Rw − dk]/Rwdk]

p if dk < Rw

0 if dk ≥ Rw
(15)

Then, another radius, Rv around each known data point is
considered and the weights are again calculated using (15),
this time, replacing Rw with Rv .

This technique can be extended to multivariate case but is
dependent upon optimization of Rw, Rq and p. It is also shown
to perform poorly if measurements lie in a low-dimensional
subspace [25]. However, this method can reduce the ‘bull’s
eye’ effect as compared to classical IDW methods.

An example of MSM application for the task of generating
REM of total received signal power is illustrated in [49].
Authors in [49] use a wireless system simulator to simulate
both indoor and outdoor scenarios with different levels of data
scarcity. Among the considered methods of Kriging, MSM
and GIDS, MSM generally performs somewhere in between
the other two. For example, when the measurement points
increase from 38 to around 695, the relative mean absolute
error (RMAE) reduces from 7.5% to 1% for Kriging, 8% to
1.5% for MSM, and 9% to 2% for GIDS. They thus conclude
that although Kriging performs best in terms of interpolation
error, but due its high computational complexity and weak
performance when observation points are low, MSM may be
preferred as it is more flexible and robust.

E. Nearest neighbor

The nearest neighbor (NeN) method is also known as
proximal interpolation or point sampling. Let Dl be the nearest
neighbor of the missing point, D and d(D,Dl) denote the dis-
tance between Dl and D, then min{d(D,Dk)} = d(D,Dl),
k = 1 . . . N . In this case, the estimated value will be the same
as the value in the nearest sampled location l. Mathematically,
the weights, λk can be represented as [50]:

λk =

{
1 if k = l

0 if k ̸= l
(16)

which leads to the missing point prediction as:

ĉ =

N∑
k=1

λkck = cl (17)

Nearest neighbor method is known for its low complexity.
Among the considered techniques in [51] for the task of
interference map interpolation, nearest neighbor interpolation

is concluded to be the least complex method and natural
neighbor, linear, cubic and quadratic interpolation techniques
have shown to exhibit comparable performances.

Although nearest neighbor approach is of low complexity,
it results in sharp transitions between the individual signal
level zones and increases noise, especially at the boundary of
a given area, since it does not consider the influence of the
sample data points apart from the nearest neighboring data
point [25], [52].

Fig. 3 (g) illustrates an example of using nearest neighbor
interpolation to interpolate scarce RSRP measurements for
constructing coverage maps. It can be seen from the figure
that compared to methods like kriging in Fig.3 (j) where
the interpolated coverage map is smooth, nearest neighbor
interpolation results in a representation that has more sharper
transitions between adjacent values.

F. Natural neighbor

The natural neighbor (NaN) interpolation is based on
Voronoi decomposition (tessellation) of a set of given points
in the plane. The received signal strength value at a particular
location is found from a weighted average of N from all
available measurements which fall within its ‘natural neigh-
borhood’.

The natural neighbors of any point are those associated with
neighboring Voronoi polygons. If the 2-D point Dk is a natural
neighbor of the 2-D point D, the portion of Voronoi region,
VDk

stolen away by D is called the natural region of D with
respect to Dk. Initially, a Voronoi diagram is constructed of all
the available coverage values. Then, a new Voronoi polygon
is created around the interpolation point (missing coverage
value). The proportion of overlap between this new polygon
and the initial polygons is then used as weights. If we denote
the Lebesgue measure of this natural region by lDk

, the natural
coordinate associated to Dk is used as weights [14]:

λDk
(D) =

lDk
(D)∑

k lDk
(D)

(18)

The weights are thus the ratio of the area of overlap to the
total area of the new polygon. Once the weights are obtained,
interpolation to find the missing coverage value can be carried
out by a weighted sum of known coverage values.

The natural neighbor interpolation method performs well
with non-homogeneous distribution of measurements as well.
However, its major drawback is that it can not find missing
signal values that lie outside the convex hull of Voronoi
polygons since it requires that the points to be interpolated
be in the convex hull of the measurement locations as the
Voronoi cells of outer data points are open-ended polygons
with an infinite area [25].

Another scheme similar to natural neighbor using an area-
wise multi-criteria triangulation-induced interpolation algo-
rithm which utilizes the linear interpolation to estimate the key
performance indicators of the QoS inside a triangle with the
known values of its three vertexes is proposed to reconstruct
the coverage maps in [53].
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Fig. 3 (h) is an illustrative example of the result obtained by
applying natural neighbor for the task of interpolating missing
RSRP values from MDT-based data in [34]. An important
observation is the interpolation at the corners of the coverage
map in Fig. 3 (h), that do not have any value due to the inability
of natural neighbors to fill the missing values that lie outside
the convex of Voronoi polygons as identified above.

G. Splines

The spline method is also referred to as the radius basis
function and ‘rubber sheeting’ [25]. It estimates the missing
value by a mathematical function or piecewise defined polyno-
mials called splines that minimizes the total surface curvature.
This results in a smooth surface that passes exactly through
the sampled points. This interpolation method is useful for
estimating above maximum and below minimum points and
for creating a smooth surface effect. However, because of
this smoothing effect, the discontinuity in data might not be
well estimated. Since it uses slope calculations or change over
distance to estimate the missing values, when the known data
points are too close together or have extreme differences in
values, this method does not work well.

There are different kinds of splines, such as linear, quadratic,
cubic, biharmonic and thin-plate splines. For example, for thin-
plate splines, the unknown value is estimated as [14]:

ĉ =

N∑
k=1

wk||D −Dk||2 ln(||D −Dk||) (19)

where ||.|| is the Euclidean norm. wk can be obtained by solv-
ing Ow = i, where i and w are the column vectors of input
data points and weights respectively, while O is the matrix of
output of the basis function (||D−Dk||2 ln(||D−Dk||) in this
case) for all possible input values.

A visual example of splines in the case of REM construction
of RSRP measurements is illustrated in Fig. 3 (i). Authors
in [34] conclude that Splines and Kriging have similar per-
formance quantitatively in terms of relative recovery error
(Frobenius norm of recovered interpolated matrix minus the
ground truth matrix divided by Frobenius norm of ground truth
matrix).

H. Kriging

Kriging, unlike the other methods discussed above, also
takes into account the statistical relationships in additional
to spatial relationships among the measured data points to
estimate the missing values of data.

In Kriging, the weights are based not only on the distance
between the measured points and the prediction location
but also on the overall spatial arrangement of the measured
points [54], [55]. The weight coefficients are calculated by
minimizing the variance of the estimation error, σ2

e :

σ2
e = V [Ĉm − Cm] (20)

where V is the variance operator and Cm is the missing
coverage value located at the 2-D point, p.

The first step in kriging therefore involves creating a pre-
diction surface map in order to uncover the dependency rules
to make predictions. To achieve this, kriging first creates
a semivariogram and covariance functions to estimate the
statistical dependence values that depend on the model of
autocorrelation. To solve the optimization problem in (20),
semivariogram function, γ is used to characterize the spatial
correlation.

The next step is to fit a model to the points forming
the empirical semivariogram. A mathematical function is
used to fit the empirical semivariogram as the theoretical
semivariogram model to model spatial autocorrelation. There
are many variants of kriging based on advanced and robust
semivariogram models, such as simple kriging, block kriging,
factorial kriging, kriging with a trend, dual kriging, universal
cokriging, kriging with an external drift, indicator kriging,
probability kriging, to name a few. A comparison of these
variants is presented in [24], [21]. Kriging weights then come
from the semivariogram that was developed by analyzing
the spatial nature of the data. These weights are a result of
minimizing the variance in (20), which yield the following
solution [50]: [

λ
δ

]
= X−1y (21)

where X and y are defined as:

X =


X1,1 · · · X1,N 1

...
. . .

...
...

XN,1 · · · XN,N

...
1 · · · 1 0

 , y =


y1
...
yN
1

 (22)

Each element of matrix, X, Xi,j = γ(||pi − pj ||) and each
element of the column vector y, yi = γ(||p − pi||). The
extra element in the weight vector solution in (21), δ, is the
result of fitting by assuming a mean trend component in the
reconstructed coverage matrix.

Kriging is applied on RSRP measurements for REM con-
struction in [56], [57]. A more practical implementation of
Kriging based approach using real data from the University
of Colorado, Boulder campus has been demonstrated in [58].
In [59], the authors propose a REM construction method by
combining residual maximum likelihood-based radio propa-
gation parameter estimation with Kriging-based transmission
power prediction. They then benchmark the performance of
their proposed algorithm with a path loss-based method and
a Kriging-based method without prior fit of a path loss
model, using the metric of root mean square error (RMSE).
Another Kriging-based radio environment map construction
method based on mobile crowd sensing is proposed in [60].
Authors in [60] compare Kriging with the nearest neighbor and
the inverse distance weighting interpolation algorithms and
conclude that Kriging performs the best for their crowdsourced
RSRP dataset. Kriging is applied in the context of a REM-
enabled spectrum sharing mechanism for performance analysis
for mobile cellular networks in [61]. Authors in [62] propose
an improved Kriging algorithm by combining the concept of
affinity propagation clustering in ordinary Kriging algorithm
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for REM construction. Another improvement over ordinary
Kriging is the fixed-rank Kriging proposed in [63]. However,
it tends to neglect the small-scale structured variations of
the data, which may result in a loss of accuracy [64]. To
overcome the limitations of ordinary and fixed-rank Kriging,
authors in [64] propose covariance tapering based Kriging.
Neural network techniques are also applied to improve Kriging
algorithm in [65], [66], [67].

In the domain of cognitive radio networks, authors in
[14] compare three interpolation methods, namely, natural
neighbor, kriging and spline for constructing interference
cartographs from a scarce set of data. They conclude that
both kriging and natural neighbor interpolations perform sim-
ilarly when the channel uncertainty is lower and that the
average efficiency of all interpolation techniques improves
with increased shadowing decorrelation [14]. Authors in [68]
conclude that Kriging performs best among nearest neighbor
and inverse distance weighted (IDW) methods. Results in [50]
again demonstrate the superior performance of Kriging among
nearest neighbors, IDW and triangular irregular network inter-
polation, but has demonstrated the robustness of IDW method
overall.

Authors in [49] compare Kriging, Modified Shepard’s
method (MSM) and Gradient plus inverse distance squared
(GIDS) and IDW for creating radio environment maps. It is
concluded that Kriging and IDW are most flexible among these
methods and offer trade-off between the computational cost
and accuracy.

Kriging has also been used in indoor environments, such
as in [69], where authors compare various interpolation tech-
niques, including Kriging, splines, weighted moving average,
Theissen polygons, trend surfaces, classification, in terms of
accuracy, spatial distribution of measurements, measurement
density and impact of a fixed location inaccuracy for the
task of signal strength prediction in an indoor environment.
The results in [69] indicate that Kriging is a fairly robust
technique overall, across all considered scenarios. Kriging has
also shown to be the method which is least sensitive to the
deployment of the sensors as compared to nearest neighbor and
inverse distance weighted in [70], where the authors analyzed
the impact of the number of sensors on the REM quality in
the context of military wireless networks. They used data from
real field tests with 39 sensors in an area of 4 km2.

Fig. 3 (j) is an illustrative example of the result obtained by
applying Kriging for the task of interpolating missing RSRP
values from MDT-based data in [34]. Authors in [34] report
that among the methods considered in Fig. 3, kriging method
performs the best with the least quantitative relative recovery
error (Frobenius norm of recovered interpolated matrix minus
the ground truth matrix divided by Frobenius norm of ground
truth matrix) of less than 0.15. This is because in contrast
to other interpolation methods where the weights are only
dependent on the distance, the weights in kriging are based
on the overall spatial arrangement of the measured points too.

The major drawbacks of Kriging are that it requires a
large number of measurement points in order to achieve high
precision and it involves significant input from the user in
order to select the best fit function for the semivariogram.

Identifying the most appropriate theoretical variogram for the
given data (especially if it exhibits large spatial heterogeneity)
is critical in order for Kriging to perform well. Although
Kriging has relatively high computational complexity, it is
the most commonly applied technique in the literature [54]
[31] due to its higher precision. As Kriging is geostatistical
method, it also can estimate the variances of predicted values
in the unsampled location.

I. Lessons Learned

Among the interpolation methods, Kriging has been most
widely used in literature due to its high accuracy. However, it is
computationally expensive. Simpler and less computationally
demanding techniques, like IDW, are shown to work best
for evenly distributed data points. Kriging, GIDS, MSM and
Splines can be used in cases where extrapolation is required.
However, when extrapolation is not required, IDW, natural
neighbors and nearest neighbors are candidate choices. Among
these, natural neighbors require all data points be inside the
convex hull of location measurement. Another method, matrix
completion, although has shown to be very promising in other
domains, its applicability to small cell environments where it
will most likely work best needs further investigation.

III. METHODS USING CONTEXTUAL INFORMATION

The preceding section discussed techniques that can be
leveraged to address the data scarcity challenge when the
only known information are the measured data and their
locations. However, if some additional information other than
the observed data is known, we can employ other techniques
leveraging that additional information, or use it to enhance the
interpolation methods.

This additional information can be knowledge of propaga-
tion model, such as path loss and other relevant parameters,
transmitter parameters, such as transmit power or antenna
patterns, transmitter location estimation, network geometry,
or characteristics of the operating environment. It is then
combined with observed scarce data to augment it. Based
on the availability of known information, different indirect
approaches can be employed. For example, authors in [71]
estimate the transmitter power and location using received
signal strength (RSS) measurements and empirical model to
enrich REM. Similarly, authors in [72] calibrate propagation
model using transmit power, antenna diagram, azimuth and tilt
angles before generating more RSS data through it.

A. Utilizing geometry of network

1) Triangular method (interpolation using locations of data
base stations): One way to estimate measurements for bins
with no user reports can be using the geometry of the base
stations as shown in Fig. 5. This is particularly suitable in
ultra-dense deployment scenarios [73], where the data base
stations (DBSs) are very densely deployed (by virtue of
switching OFF DBSs to keep energy consumption and inter-
ference low). These additional measurements, after appropriate
transformation, can then be used to increase the accuracy of
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Fig. 5: Leveraging dense base station deployment to enrich
scarce data.
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Fig. 6: Leveraging cluster geometry to enrich scarce data.

interpolation methods proposed above. However, this approach
can complement only simple measurements such as received
signal strength.

2) Arc method (exploiting pattern among clusters in polar
coordinates): Another way to enrich scarce data in a given
network area can be by dividing the area into clusters into
polar coordinates as shown in Fig. 6. Each cluster has a value
that can show a given KPI, such as the average RSRP or
SINR of the users in that cluster. To find the missing value
in a particular cluster, geometric pattern among other clusters
can be exploited, for example, if we travel along a particular
circumference, we observe that the Tx-Rx distance remains
constant on that circumference and the only variation is in
azimuth angle (θ1 to θ4 in Fig. 6). Conversely, if we traverse
a path radially outwards, we can notice that the azimuth angle
remains the same but there is variation in Tx-Rx distance (d1
to d3 in Fig. 6 assuming base station is located at the center
of the sector). If we model the received signal strength as a
function of azimuth angle and Tx-Rx distance, this pattern can
be exploited to find the unknown signal strength values.

Learning cluster values by exploiting this pattern using
a supervised DNN has been proposed in [74]. However,
authors in [74] has not used this approach to address the data
scarcity challenge. In [74], correlations among their SINRs has
been exploited to learn the locations of users at macrocells.
However, we propose that such a model based on correlations
among SINRs of known clusters can also be used to find the
missing SINR in another cluster.

B. Through propagation modeling and transmitter parameter
estimation

1) Received signal strength (RSS) based: The RSS based
method to recover scarce data is based on a combination of
analytical models with statistical evaluation through measure-
ments [71]. The RSS at a particular receiver, i located at a
distance, d can be represented as:

Pi(d) = Pt − L− 10p log10(d) + ϕ (23)

where Pt is the transmit power, L is the free space path loss
and ϕ represents a lognormal random variable for shadowing.
L, p and standard deviation of ϕ are environment dependent
parameters.

After averaging out RSS measurements (in order to reduce
random shadowing effect), and assuming the sample size of
RSS measurements is large enough, the average RSS at a
particular location can be estimated as:

P avi (d) ≈ Pt − L− 10p log10(d), where P avi (d) =
N∑
k=1

P ki (d)/N

(24)

After performing some algebraic manipulations, taking the
anti-log of (24) and representing d is cartesian coordinates,
(24) can be transformed into a regression problem which can
be expressed as a system of linear equation as follows [75]:
10
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(25)

where xt, yt is the transmitter location and(xi, yi) is the i-
th receiver location. Therefore, by solving (25) using least-
squares methods, we get estimates for transmit power, Pt and
the location of transmitter, (xt, yt). These estimates can then
be used to evaluate estimated received power at the missing
location, by first calculating the Tx-Rx distance at the missing
location and then using it to find RSS. A similar method
combining transmitter localization estimation with Kriging is
proposed in [76].

Note that since path loss and shadowing parameters in the
model are assumed to be known and are highly environment
dependent, the quality of estimated is likely to be drastically
affected if there is an error in estimation of propagation
parameters, caused by, for example, high shadowing fading in
the environment. However, this method is likely to improve if
propagation conditions are not too drastic, for example, in rural
areas and if the number of receivers with known measurements
are large. It is also shown in [75] that unlike IDW and Kriging,
RSS-based method is not affected by the minimum distance
between receiver and transmitter and therefore, is more robust
as compared to interpolation methods alone.

RSS algorithm was applied for the task of REM interfer-
ence cartography generation in [71]. Results from [71] show
that the transmitter location estimation error decreases in an
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exponential manner as the number of sensor measurements
increases.

2) Received signal strength difference (RSSD) based:
The RSSD method is based on the received signal strength
difference (RSSD) between two base stations or transmitters.
It is assumed that transmit power is known, transmitter lo-
cation, (xt, yt) is estimated based on the idea that the ratio
of the signal powers (or their differences expressed in dB)
observed at two different receiver locations is related to the
ratios of the transmitter to receiver distances. Specifically, the
received power differences between any two receivers, located
at (xa, ya) and (xb, yb) can be represented as [71]:

Pab = 5p log10

(
(xt − xa)

2
+ (yt − ya)

2

(xt − xb)
2
+ (yt − yb)

2

)
(26)

The transmitter location in (26) can then be estimated by
solving a linear system of equations of the following form:


1− β12 −2(x2 − β12x1) −2(y2 − β12y1)
1− β13 −2(x3 − β13x1) −2(y3 − β13y1)

...
...

...
1− β1N −2(xN − β1Nx1) −2(yNβ1Ny1)


x2t + y2t

xt
yt

 =


β12(x

2
1 + y21)− (x22 + y22)

β13(x
2
1 + y21)− (x23 + y23)

...
β1N (x21 + y21)− (x2N + y2N )

 (27)

where βab =
(xt−xa)

2+(yt−ya)2

(xt−xb)
2+(yt−yb)2

. Solution to (27) by ordinary
least squares using available receiver locations yields estimates
for xt, yt, x2t + y2t . Once the transmitter location has been
estimated, the received signal level at any location can also
be estimated by subtracting the path loss from transmitted
signal power. As with RSS based method, this method is
also dependent on selection of propagation parameters, such
as path-loss exponent and shadowing spread.

Performance comparison between RSS and RSSD based
methods for REM construction was done in [71]. Results
in [71] show that the transmitter location estimation error
decreases in an exponential manner as the number of sen-
sor measurements increases. For example, as the number of
measurements increase from 6 to 20, the transmitter location
error decreases from to 75 m to around 23 m for RSSD based
approach and it decreases from around 24 m to approximately
12 m for the RSS based method. As can be seen quantita-
tively, RSSD algorithm outperforms RSS based method for
all measurement densities.

3) Angle of arrival (AOA) based: Using prior knowledge
of transmit power and using measurements from N receivers
with known locations, this method first estimates the angles
of arrival at the locations of the measurements and combines
them with the received signal powers to estimate the location
of the transmitter. Once the location of the transmitter and
its transmit power is available, any appropriate propagation
model can be applied to estimate unknown data at different
locations.

The signal model for received signal at i-th receiver is
modeled as [77]:

Ri =
√
α(di)h(θi)s+ ni (28)

where s is the complex baseband transmitted signal with
known transmit power, di is the unknown distance between
the unknown transmitter and receiver, θi is the unknown angle
by which the signal reached the i-th receiver and ni is additive
white Gaussian noise vector. The (θi, di) pair represents a
unique position. The directional and attenuation characteristics
of the channel h can be modeled by:

h(θi) =

[
1

exp(j π2 sin(θi))

]
, α(di) = ϕ

(
c

4πf

)
d−pi (29)

For the recovery of missing measurements, first, the angle
of arrival based on the received signal strength is estimated at
each receiver and then a fusion of these estimates is performed.
For angle of arrival estimation, authors in [77] apply the
multiple signal classification (MUSIC) algorithm and obtain
estimated of the pair (θi, di), that translate into a location
estimate for the i-th receiver:

[
x̂it
ŷit

]
=

[
xi
yi

]
+

[
d̂i cos(θ̂i)

d̂i sin(θ̂i)

]
(30)

Next, these estimated locations are transferred to a central
network that combines these estimates. One way to combine
these estimates can be through simple averaging. Another
fusion method proposed in [78] obtains the following over-
conditioned system from the estimates:

 −x1 sin(θ̂1) + y1 cos(θ̂1)
...

−xN sin(θ̂N ) + yN cos(θ̂N )

 ≈

− sin(θ̂1) cos(θ̂1)
...

...
− sin(θ̂N ) cos(θ̂N )

[x̂tŷt
]

(31)

Solving this system of equations through least squares
solutions yields the transmitter location, which can then be
combined with known transmit power and a suitable propaga-
tion model to estimate signal strengths at unknown locations.

Authors in [77] use AOA based method for interference
source localization to interpolate REMs. Authors in [77] com-
pare the AOA based method with simple averaging method
(where averaging of sensor estimates by all sensors is done)
and SNR based method in Section III-B4, where sensor
results are weighted by each sensor’s SNRs. The AOA method
outperforms the other two methods at low SINRs.

4) Signal to noise ratio (SNR) based method: The initial
steps of this method are similar to AOA based method in which
the estimation step at each receiver enables the estimation of
the angle of arrival and the received signal power. However,
in the later step, combination of the location estimates is done
through SNR-aided fusion. The basic idea of this approach is
the observation that receivers far away from the transmitter
yield worse location estimates. Hence the receiver results are
weighted with their respective receiver’s SNR, Γi as follows
[77], [79]:
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[
x̂t
ŷt

]
=

N∑
i=0

Γi∑N
k=1 Γk

[
x̂it
ŷit

]
(32)

where the received SNR at the i-th receiver is:

Γi(d) = E

[
α(di)Pt
NoB

]
(33)

with No being the noise power density and B being the
bandwidth of the receiver.

The SNR based method has been used for interference
source localization for cognitive radio scenarios to interpolate
REMs in [77]. Authors in [77] conclude that AOA based
method using tens of sensor nodes with two antennas in an area
of 2500 m × 2500 m can meet the location error requirement
of FCC, which is ± 50 m and outperforms AOA based method
at moderate to high SINR.

5) Self-tuning method: Another method utilizing propaga-
tion parameters but also taking the antenna pattern into account
is the self-tuning method (STM) is proposed in [72]. In addi-
tion to leveraging characteristics of the operating environment,
it performs estimation of the transmitter location, antenna
parameters, transmit power and parameters of the propagation
model such that the error between available measurements and
predicted data is minimized.

Using the scarce data collected, the STM first estimates
transmitter parameters and calibrates the propagation model.
This is then used to predict missing data, such as signal
levels. Among these transmission parameters, the location of
transmitter is calculated using localization algorithms based
on parameters such as angle of arrival or timing advance,
time of arrival or time difference of arrival. Then, based on
the transmitter location, distance from transmitter to receiver
is calculated. This distance is then used in an appropriate
propagation model. As an example, if the Okumura-Hata
model is used, the received power at a particular location can
be represented as:

Pr = Pt −Ao −A1 log10(d)−A2 log10(He)−
A3 log10(d) log10(H) + 3.2(log10(11.75Hm))2−
44.49 log10(f) + 4.78(log10(f))

2 − Ld − Lc +G (34)

where Pt is the transmit power, d is the transmitter-receiver
distance, f is the operating frequency, Ld represents the
diffraction loss, Lc is the loss through terrain clutter, H is
the height of transmitter and Ao, A1, A2, A3 are the constant
coefficients. G represents the antenna gain and can be repre-
sented as [72]:

G = Gmax − Fθ + Fθ

∣∣∣∣cosp1 (θazi − θu
2

)∣∣∣∣− Fϕ + Fϕ

∣∣∣∣cosp2 (ϕtilt − ϕu
2

)∣∣∣∣
(35)

where ϕtilt is the tilt angle of the antenna, ϕu is the vertical
angle from the reference axis (for tilt) to the user. θazi is the
angle of orientation of the antenna with respect to horizontal
reference axis i.e., positive x-axis, θu is the angular distance of
the user from the horizontal reference axis. Gmax represents
the maximum antenna gain and Fθ and Fϕ are the front to

back ratios in both directions, whereas the antenna form is
approximated with the cosine functions to the power of p1
and p2

We suggest that another option for a more practical direc-
tional antenna model defined by 3GPP and utilized in [8] can
be as follows:

G = λϕ

(
Gmax −min
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12
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)2

, Amax

))
+

λθ

(
Gmax −min
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12
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Bθ

)2

, Amax

))
(36)

The additional antenna parameters in this model are the
half power vertical and horizontal beamwidths, Bϕ and Bθ
respectively and the side and back lobe attenuation, Amax.

Having defined a suitable propagation and antenna model,
the optimal antenna, transmitter and propagation environment
parameters can then be obtained by minimizing the mean
squared error between the measured and estimated signal
strengths. Authors in [72] solved this optimization problem
in a non-least squared sense, using prior knowledge of the
bounds for the parameters to be optimized.

After solving the optimization problem by a suitable algo-
rithm, the optimized parameters are applied in the calculation
of signal levels at unknown location to augment the existing
data.

Note that Ld and Lc require knowledge of the propagation
environment, such as access to clutter database of a mobile op-
erator or knowledge of the digital elevation model [72]. Also,
antenna parameters knowledge through antenna datasheets or
antenna diagrams is required in this method.

STM has been applied for constructing the radio frequency
layer of REM in [72]. When 1000 measurements are used,
STM method obtains the lowest RMSE of 5, followed by
Kriging with RMSE of 17.5, while IDW attains the highest
RMSE of 22.5 [72].

C. Lessons Learned

The methods discussed in this section can be used in cases
where some additional contextual information is known. Based
on the network geometry, triangular method can be used in the
case when transmitter locations are known, and arc method can
be used in cases where transmitter locations are not known.
When the propagation environment parameters are known,
along with the transmit power and receivers’ SNR, the SNR-
based method can be used. However, if SNR is not known,
but antenna characteristics are known, the STM method can
be a potential candidate solution. There are also methods such
as AOA based method, RSS, RSSD based method that do not
require antenna or SNR information, but instead make use of
mathematical equations/models after estimating or using prior
knowledge of the transmit power and location. However, since
these methods are mostly based on analytical models, they
inherit some assumptions.
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Fig. 7: Conventional GAN architecture.

IV. MACHINE LEARNING METHODS

Several machine learning techniques such as generative
adversarial networks (GANs), autoencoders, transfer learning
and few-shot learning techniques can be leveraged to address
the training data scarcity challenge in radio access networks. In
certain RAN use-cases involving higher dimensional datasets,
these neural network based techniques can be trained with
much less training data (or with higher performance for the
same amount of data) due to their efficient learning ability for
higher-dimensional datasets as compared to previously men-
tioned interpolation and contextual information based methods
[80]. Examples of scarce data and use cases in RAN where
ML techniques have shown superior performance than other
techniques, include CDR data for traffic map prediction [19],
[81], MDT data for outage detection [82], cell trace data for
performance analysis [83], RSS data for pathloss prediction
[84], [85], RF data for radio map generation [86], [87] and
configuration data for performance prediction [88]–[95].

A. Generative adversarial networks

Generative adversarial networks (GANs) success in image
processing has been well established [96]- [100]. Although
this concept has widely been used in image processing, it
can also be used in wireless communications. In wireless
communications context, the works that utilize GANs are
limited to [19], [81], [82], [86], [87], [101]–[103]. While
GANs have been widely used for image data, its application
to tabular data remains relatively limited. The works that use
GANs on tabular data in a non-cellular network data context
include [104]–[109]. However, similar concepts can be applied
to wireless data domain too.

The basic idea of GAN illustrated in Fig. 7 is to generate
large amount of synthetic data building on small amounts of
real data which will not be distinguishable from real data.
The intuition behind GANs is to exploit the potential of deep
neural networks (DNNs) to both model nonlinear complex re-
lationships (the generator) as well as classify complex signals
(the discriminator). In GAN, a two-player minimax game is
set between the discriminator DNN and generator DNN as
follows:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] +

Ez∼pz(z) [log(1−D(G(z)))] (37)

where V (D,G) is the value function over which training
happens, the latent variable z is randomly drawn from prior
distribution pz(z), x is sampled from pdata(x), generator
G is a mapping from the latent variable z to data space
and the discriminator is a scalar function of data space that
outputs probability that input was genuine. Other types of loss
functions for the discriminator and generator for different types
of GANs are described in [110]. In each training epoch, the
generator iterates its weights to produce synthetic data trying
to fool the discriminator DNN. The discriminator DNN on
the other hand, tries to discriminate between real data and
generated data. In theory, when Nash equilibrium is reached
between the generator DNN and discriminator DNN, the pair
of DNNs will provide us a generator that can exactly duplicate
or reproduce the distribution of the real data so that the
discriminator would be unable to identify whether a sample is
synthetic i.e., whether it is generated by the generator DNN
or it is from the real data. At this point, the synthetic data
generated by the generator DNN are indistinguishable from
the real data, and are thus as realistic as possible.

To assess the efficacy of GAN-based approach outlined
above, as a preliminary study recently published in [19], GAN
was leveraged to generate synthetic call data records (CDRs)
data and thus increased training dataset size by enriching the
real scarce CDR from [111] with realistic synthetic data. CDRs
data are selected as preliminary case study because CDR data
can be used by a large number of SON solutions such as
in [112], [113]. Real network traces with call durations and
call start time stamps, provided by one of the leading mobile
operators in USA, were used in this study to train the GAN.
The discriminator was trained beginning with 20,000 data
points (from a record of several hundred thousand). Once the
discriminator could reliably differentiate between the real data
taken from the record and randomly generated CDR data with
two features i.e., call duration and start time, the generator
was trained. After the generator was generating data that
the discriminator perceived to be real, we used the trained
generator to produce another 20,000 CDR data samples. Figs.
8a and 8c and represent the distribution of the real data used to
train the discriminator. Figs. 8b and 8d show the distribution
of the 20,000 synthetic data points produced by the trained
generator. These preliminary results show the high similarity
between real and synthetic data produced by the proposed
GAN based approach.

Other GAN-based approaches in cellular networks context
include the use of GANs to address the imbalance data
issue in cell outage detection [82] Authors in [82] use an
LTE simulator to get RSRP and RSRQ data and combine
GAN with AdaBoost to improve classification performance
of imbalanced data for cell outage detection in self-organizing
cellular networks.

A radio environment maps estimation algorithm leveraging
a GAN-based pixel regression framework (PRF) for underlay
cognitive radio networks using incomplete training data is
proposed in [86], [87]. In these works, the authors first
transform the radio environment maps estimation task into
a pixel regression through color mapping. Then they extract
helpful information from the incomplete training data, design
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Fig. 8: Leveraging GAN for enriching the scarce training data
[19].

a feature enhancing module for the PRF algorithm, which
intelligently learns and emphasizes the important features from
the training images. Finally, they train the PRF to reconstruct
the radio environment maps in the target area. Three indicators
are used to test the proposed algorithm: the visual display of
the radio environment maps, the estimated power spectrum
of primary users, and the average REMs estimating error
against different numbers of secondary users. Results are
bench-marked with IDW and Kriging with the exponential
semi-variogram estimation.

Moreover, authors in [81], while drawing inspiration from
image processing design a deep-learning architecture tailored
to mobile networking, which combines Zipper Network (Zip-
Net) and GAN models. Using the open-source Telecom Italia’s
dataset [111], they infer fine-grained mobile traffic patterns to
monitor city-wide mobile traffic via the GAN.

However, GANs suffer from many challenges, such as van-
ishing gradients, oscillations, modal collapse and the design
of suitable evaluation metrics to evaluate their performance.

B. Autoencoders

Unlike GANs, which come in the class of implicit density
methods (where the prior distribution of latent features is not
known), some generative methods fall under explicit density
method, meaning that the distribution of latent features is
explicitly defined. One such method is a type of autoencoder,
namely variational autoencoder (VAE). Autoencoders are ba-
sically neural networks consisting of an encoder and decoder,
that encodes the input to a point in latent space, by performing
non-linear dimensionality reduction (Fig. 9). The parameters
of the encoder and decoder are optimized during training to
minimize the reconstruction loss, as the autoencoder learns
to reproduce its input. On the other hand, as illustrated in
Fig. 9, variational autoencoders encode the input into a multi-
variate distribution (e.g., normal distribution) in latent space,
described by the mean and variance vector where the length
of the vector is equal to the number of dimensions in latent
space. This probabilistic representation ensures that the latent
space has good properties, such as variability of the latent
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Fig. 9: A conventional vanilla autoencoder and variational
autoencoder (whose internal representation is described by a
probability distribution).

space, thus making the model more robust and achieve better
performance as compared to traditional autoencoders.

VAEs are used in literature [114], [115] to handle labeled
training data scarcity problem for anomaly detection use-cases
in RAN. In these use-cases labeled training data is severely im-
balanced and traditional machine learning techniques are not
able to distinguish the anomalies from the majority data. As a
case study, authors in [114] used VAEs for anomaly detection
and root cause analysis (RCA) in radio access networks. The
data used in the analysis includes key performance indicators
(KPIs) that indicate network quality of service (QoS), as well
as key quality indicators (KQIs) that indicate user quality
of experience (QoE). The anomaly detection module focuses
on detecting the performance degradation in RAN, whereas
the RCA module tries to find the root cause of detected
anomalies. The proposed anomaly detection module takes time
series of KPIs/KQIs from a cell as an input to the VAE
model and outputs their respective anomaly score based on
the error from the VAE model when it tries to reproduce
its input. The RCA module is trained by auto-labelling the
anomaly labels in a semi-supervised fashion using KQI rules,
e.g., high PRB usage, over coverage, weak coverage, etc.
The proposed AI-based approach is then tested in a live O-
RAN compliant network for closed loop automation, resulting
in 25% increase in downlink rate and 8% increase in RRC
connection establishment with zero human cost in the entire
process.

Similarly, adversarial autoencoders are a type of variational
autoencoders which combines the architecture of autoencoders
with GANs adversarial loss for regularization. Authors in
[115] demonstrated the effectiveness of adversarial autoen-
coders for detecting anomalous behavior in wireless spec-
trum using power spectral density data. Manual spectrum
management, especially in emerging dense and heterogeneous
networks is inefficient and can only detect limited anomalies.
Therefore, automated spectrum monitoring solutions are be-
coming more crucial than ever before. Along with anomaly de-
tection, the proposed model in [115] shows a semi-supervised
wireless band classification accuracy close to 100% on datasets
using only 20% of the labeled samples.
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Fig. 10: An example of transfer learning in deep neural
networks for coverage estimation. The feature network (source
model) is pre-trained on a large dataset (from BS with rich
data). The target model is created by transferring the knowl-
edge learned from the source model, e.g., weights of the
model. This model is then trained/fine-tuned using the scarce
dataset (from BS with scarce data).

C. Transfer learning

For data streams where latent features are too little to allow
the use of GANs, matrix completion or other interpolation
techniques identified above, the transfer-learning paradigm
[89], [116] can be leveraged.

Transfer learning aims to help improve the learning of
the target environment (target model) by transferring the
knowledge learned from another similar environment (source
model). One way of achieving that is by model fine-tuning,
where a larger source dataset is used to pre-train a neural-
network based model (source model) and fine-tuned using the
target scarce dataset (as illustrated in Fig. 10).

In cellular network context, similarities among cells can
be leveraged for determining when to use transfer learning.
To quantify similarities among the cells, one approach is to
use Wasserstein distance measure [117]. Given two random
variables fi and fj with marginal distributions P (fi) and
P (fj) respectively, let ψ denote the set of all possible joint
distributions that has marginals of P (fi) and P (fj). Then
Wasserstein distance between them is defined as:

W (fi, fj) = inf
Pfifj

∈ψ

∫
|fi − fj |Pfifj (fi, fj)dfidfj (38)

The inf in Equation (38) gives joint distribution with fi and
fj having smallest distance while maintaining the marginals.

Several works have been carried out in the literature using
transfer learning to address data scarcity problem for network

performance prediction [89]–[95]. As a case study, authors
in [90] proposed to use transfer learning for parameter con-
figuration in cellular networks. In this work, contextual bandit
algorithm is leveraged along with transfer learning to optimize
parameter configurations for uplink power control and user
scheduling using cell KPI/counter data. Cell state measure-
ments e.g., the number of total users within the cell, the
number of active users, the average channel quality indicator
(CQI) of the cell, etc. are collected for each cell at each hour,
and the goal is to minimize the ratio of users with experienced
throughput less than 5Mbps for each cell. Live field tests
in a real cellular network consisting of 1700+ cells show a
significant performance improvement of 20% by optimizing
five parameters for two weeks, thereby demonstrating the
effectiveness of the proposed scheme.

A transfer actor-critic learning framework for energy saving
in cellular radio access networks is proposed in [91]. This work
utilizes the transferred learning expertise in historical periods
or neighboring regions for predicting traffic load variations
for BS ON/OFF switching. The problem of predicting the
signal strength in the downlink of a real LTE network, where
the antennas can be tuned to operate with different antenna
tilt configurations is addressed using transfer learning in [92].
The authors show that augmenting the data from the source
domain by adding data available from other tilts configurations
of the same antenna improves the performance of the proposed
transfer learning approaches. Transfer learning for channel
quality and active UEs prediction is proposed in [93], using
KPI/counter data from a commercial LTE network. The results
show how transfer learning can be carried out across pairs of
cells working at different frequencies, or at the same frequency
in different locations and how to pick suitable candidate cells
across the city for the transfer learning task. Transfer learning
is also particularly helpful in tasks that require frequent model
retraining, due to changes in the operational environment
during execution, such as learning performance model for a
cloud service [94]. Authors in [94] show that the number
of new measurements required to compute a new model
are reduced by an order of magnitude in most cases using
transfer learning, as compared to training the new model
from scratch, when evaluated on traces collected from a
testbed running video-on-demand service, under various load
conditions. However, finding suitable transfer candidates, or
where to transfer is another challenging research question that
remains unfocused in most of the works discussed earlier.
Authors in [95] argue that the choice of source domain can
either yield ‘transfer gain’, or further decrease the performance
of the baseline model, commonly known as ‘negative transfer’,
and proposed two source selection approaches to mitigate this
issue. A key result from their study is that source selection
should encourage diversity of the data in source domain rather
than similarity between source and target cell, especially in
scenarios with few samples in target domain as the similarity
between the underlying distributions of both domains cannot
be reliably measured.
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TABLE II: Comparison of different simulators for solving data scarcity problem.

Feature Simulator

GTEC [118]

OpenAirInterface [119]

5G-K [120]

X.Wang et al. [121]

V.V.Diaz et al. [122]

ns-3 [123]

OMNeT++ [124]

NYUSIM [125]

MATLAB/SIMULINK [126]

C-RAN [127]

OPNET [128]

Vienna 5G [129]

Atoll [130]

SyntheticNET [131]

Scheduling support ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

mm-Wave support ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Adaptive numerology ✔ ✔ ✔ ✔

QCI support ✔ ✔ ✔

Parallelized offline traces and time-
independent KPIs pre-generation for re-
duced online computational cost

✔ ✔

Realistic antenna patterns modeling ✔ ✔ ✔

Signaling overhead modelling ✔

Realistic mobility modeling ✔

AI based pathloss modeling ✔

500+ COPs modeling ✔

Realistic HO management ✔

Realistic mobility pattern ✔

Python based to enable data processing
and easy incorporation of ML libraries

✔

Free license* ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

D. Few-shot learning

Few-shot learning (FSL) is another branch of machine
learning that addresses the performance degradation problem
of deep learning algorithms when the training dataset size is
small. Using prior knowledge, FSL can master new tasks from
a limited number of examples [132]. This type of learning is
primarily motivated from the ability of humans to learn from
only a few examples. Therefore, FSL can eliminate expensive
data collection efforts and help in building suitable models for
rare cases of limited supervised data [132].

FSL can be used for classification, regression and even
reinforcement learning tasks using only few labeled, input-
output and state-action examples respectively. However, the
most common application scenario for FSL is “N-way-K-shot
classification”, where a classifier is built for distinguishing
between N classes, each having only K examples per class.
When only one example with supervision is available, it is
referred to as One-Shot Learning and when no example is
available, it is called Zero-Shot Learning.

FSL is a very active area of research these days and
the methods being proposed in the literature for solving the
few-shot problem can be broadly classified in two different
branches: 1) Meta learning, and 2) Metric learning. The key
idea in Meta learning-based methods (as shown in Fig. 11)
is to distill the experience of multiple learning episodes from
a distribution of related tasks. This learning to learn strategy
can improve the future learning performance on new few-shot
learning tasks, thus developing a task-agnostic learner with
improved data and compute efficiency [133], [134]. Examples
of methods include Model Agnostic Meta Learning [135],
Task-Agnostic Meta Learning [136] and Meta-transfer Learn-
ing [137]. These methods are good at out-of-distribution tasks
and can handle varying and large shots well, but their model
and architecture are intertwined and their optimization process

Model Meta learner
Task Data New Tasks

Model

Meta learner

Tasks

Meta learner training to 
learn on each task

SpeciBCc Classes

Training Data

Target Data

Learner

Task-agnostic

Task-speciBCc

Learning Strategy

Fig. 11: Meta learning-based methods can learn a learning
strategy from a family of tasks by developing a task-agnostic
learner. The learning strategy (or task-agnostic knowledge)
can then be used to improve the learning of a new few-shot
learning task from that task family [133].

is challenging [138]. On the other hand, Metric learning-based
methods learn to compare query set (test set) with support set
(few-shot training set) by learning transferable representations
in semantic embedding space using a distance loss function
(learn to compare). Examples include Siamese Neural Net-
works [139], Matching Networks [140], Prototypical Networks
[141], Relation Networks [142] and Graph Neural Networks
[143]. As compared to meta learning-based methods, these are
relatively simple, entirely feedforward, computationally fast
and easy to optimize, but harder to generalize to varying shots
and to scale to very large shots [138].

A few works have been carried out using few-shot learning
to address training data scarcity issue in cellular networks.
Authors in [83] use prototypical networks, a few-shot learning-
based algorithm for performance metrics analysis in LTE
networks. They used eNodeB trace data from live network
and classified individual eNodeBs into different performance
classes based on their KPIs. Their results show an improved
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performance as compared to baseline DNN, 1-D CNN and
2-D CNN.

Authors in [84] show that meta learning can be used
in mmWave smart factory environment to frame the indoor
pathloss prediction task as a meta-task comprising of mul-
tiple tasks. Authors show that meta-learning based CNN-
based model trained on a meta-task of multiple beams can
outperform conventional training methods. Specifically, the
prediction RMSE of the proposed meta-learning based CNN
model show a gain of 70% in terms of prediction accuracy as
compared to floating-intercept (FI) model, and a gain of 55%
as compared to conventional CNN based model.

Authors in [144] use self-imitation via transfer learning
to achieve few-shot learning for the resource management
(network power minimization) problem in Cloud Radio Access
Networks (C-RAN). Their simulation results show that few-
shot learning is able to achieve similar performance even with
scarce and unlabeled training data, as compared to a model
that is trained without few-shot learning even with labeled
data. These results show the power of few-shot learning in
scenarios where labeled training data is not available or is
very scarcely available.

E. Lessons Learned

Based on the covered literature, we can see that all the
above-mentioned ML/DL techniques work well for modeling
high-dimensional datasets, however, they differ in terms of
their applicability. For instance, both GANs and autoencoders
can only generate quality synthetic data if their training data
contains some latent information about their environment. In
situations where the scarce dataset is not representative of
the environment from which it is collected, few-shot learning
and transfer learning techniques can be used. Both, however,
rely on the availability of auxiliary datasets to help them
learn the target environment from unrepresentative training
data. Transfer learning requires data from a similar domain
or task to gain insights and then transfer that knowledge to
the task at hand. few-shot learning requires data from a lot of
different (but not necessarily similar) task/domain to learn the
unfamiliar environment. These takeaways are also illustrated
in Fig. 17 for the benefit of the reader.

V. SYNTHETIC DATA GENERATION

The techniques mentioned in previous sections are likely
to work well when the scarce available data is somewhat
representative of the whole data or exhibits some degree of
correlation. In situations where the available data is scarce
and non-representative, the methods presented in preceding
sections are likely to perform poorly. Likewise, in other sce-
narios, the available data can be big, but still not representative.
In these cases, the solution lies in either resorting to get real
data or generate synthetic data. In this section, we will present
ways to generate synthetic data through simulators.

A. Simulators

System level simulators are widely used in both industry
and academia due to limitations of analytical models and

(a) Turku Testbed (b) Surrey Testbed

(c) CORNET Testbed
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m
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Wireless Backhaul

(d) OU-Tulsa Testbed

(e) 5G-VINNI Norway (f) FLEX Testbed

(g) 5G Playground Testbed (h) 5G Test Network, Espoo

(i) 5G Test Network, Tampere (j) 5G-VINNI Berlin

(k) 5G-VINNI Greece

Fig. 12: Some current and emerging 5G testbeds.

field experiments. Apart from the limitation of mounting Base
Stations (BSs) on predefined locations, the support of antenna
height, tilt, transmission power etc. for individual BSs is absent
in the analytical model. Furthermore, stochastic geometry-
based models are unable to capture the network dynamics
which include mobility management and transmission latency.
On the other hand, field trials exhibit the most realistic
modeling of network performance, evaluation and tuning.
However, this approach is impractical owing to the cost and
time effort required to conduct field trials on a large scale, and
with the high probability of significant network performance
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Federated Testbeds
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Fig. 13: Federated Testbeds.

impairment of live mobile network during the trial phase.
A list of existing simulators along with a comparison of

their features is presented in Table II. For more details on these
simulators, the reader is referred to two existing surveys on
simulators; [28] that compares 4G and 5G simulators, and [29]
that gives the summary of the most significant 5G simulators.

As observed from Table II, none of the simulators is
based on comprehensive 5G standard incorporating all aspects
outlined in the standard. To tackle this problem, SyntheticNET
simulator built on Python platform was developed by the
AI4Networks Research Center at the University of Oklahoma
[131]. The SyntheticNET simulator is modular, flexible, mi-
croscopic and versatile, built-in compliance with the 3GPP
Release 15. This simulator supports features like adaptive
numerology, actual hand over (HO) criteria and futuristic
database-aided edge computing to name a few. Instead of an
objected-oriented programming (OOP) based structure like ex-
isting simulators, SyntheticNET simulator supports commonly
used database files (like SQL, Microsoft Access, Microsoft
Excel). Site info, user info, configuration parameters, antenna
pattern etc. can be directly imported to the simulator. As a
result, the simulation environment is more realistic and closer
to actual deployment scenarios. For further details of this
simulator, the reader is referred to [131].

Python based platform and the flexibility of different input
and output data formats in SyntheticNET simulator can assist
in solving the data scarcity challenge by generating ample
amounts of synthetic data to enrich the available scarce real
data, which can then be used to implement different Self
Organizing Networks (SON) related features or AI based
network solutions [1]. Mobile operators can use it for planning,
evaluating or even optimization of beyond 5G networks.
Research community can also benefit from it by implementing
the new ideas on data generated from this 3GPP-based realistic
5G network simulator.

Fault diagnosis using synthetic data from Atoll simulator
is used in [145]. Authors in [145] consider 4 types of faults
characterized by cell outage, low transmit power, excessive
antenna uptilt, and excessive antenna downtilt. The SINR maps
obtained in these scenarios are scarce as shown in Fig. 14.
Authors in [145] then analyse the performance of several ML-
based algorithms for fault diagnosis in Fig. 15, where the UE
density on x-axis corresponds to the network depiction in Fig.
14. As compared to complete coverage maps, a drastic drop in
diagnosis accuracy is observed for the ML models on scarce
data, where the exact match ratio (EMR) drops from 90.2%
to 69% and from 92% to 71.3% respectively, as the density of
users drops from 203 to 100 users/cell. Performance continues
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Fig. 14: Network coverage maps with various user densities
(a) Full coverage map (203 UEs/cell) (b) 100 UEs/cell (c) 80
UEs/cell (d) 60 UEs/cell (e) 40 UEs/cell (f) 20 UEs/cell [145].

Fig. 15: Performance comparison of ML models on scarce and
complete coverage maps data [145].

to deteriorate as the number of users decreases per cell.
Another example of data generated through simulators

include system features data (such as BS horizontal/vertical
separation, transmit power, operating frequency, antenna
beamwidth and gain) and environment features (such as prop-
agation distance, clutter types, BS height, diffraction points,
number of building penetrations in each clutter type) to create
a machine learning based prediction model for 3D pathloss and
received signal strength (RSS) [85] to overcome the challenges
of conventional and ray tracing based path loss modeling.
This work investigated the model performance under varying
data scarcity levels (UE density). Fig. 16 is a key numerical
result from this study, which shows how the augmentation
of scarce training data (from 400 UE traces/km2 to 20,000
UE traces/km2) leads to significant reduction in RMSE (RSS
prediction error) for most ML algorithms used for path loss
and ultimately RSS prediction.

Another simulator generated data in [146] includes the
dataset of RSRP, SINR, and handover success rate (HOSR)
against the rarely explored mobility configuration and opti-
mization parameters, namely A5 time to trigger, A5 threshold
1 and 2. The A5 parameters are usually fixed to a gold standard
value or adjusted through hit and trial due to the valid reluc-
tance of network operators to test all parameter combinations

3 3.5 4 4.5 5 5.5 6
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Gradient Tree Boosting
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Fig. 16: Comparison of RSS prediction error when the ML
based prediction models are trained using scarce and enriched
synthetic data. Height of bars represent the mean value and er-
ror bar represent the standard deviation using 5-fold Repeated
Cross Validation. Enriched synthetic data leads to a reduction
in RSS prediction error (RMSE) [85]

.
in the live network. To overcome this issue, synthetic data from
a 3GPP-compliant simulator was generated. This type of data
was then used to develop a closed loop solution for optimizing
seldom explored A5 parameters by jointly maximizing RSRP,
SINR and HOSR [146].

B. Lessons learned

Synthetic data using simulators can be used to augment data
in situations where the available data is non-representative.
Simulators are also a good candidate to generate training data
for transfer learning or meta-learning techniques. Although
most simulators are link level, system level simulators are also
there. The choice of simulators depends on what features (e.g.,
scheduling support, mmWave, adaptive numerology, mobility
and pathloss modeling, COPs, etc.) are supported and Table II
can assist the reader for this purpose. Based on the available
literature, SyntheticNET has the most features supported.

VI. REAL DATA GENERATION

The preceding techniques, with the exception of using
simulators, are likely to work well when the scarce available
data is somewhat representative of the whole data or exhibits
some degree of correlation. In situations where the available
data is scarce or big but non-representative, the solution lies
in obtaining real data.

One way of getting access to real data can be utilizing
historic logs of data gathered by other researchers. However,
these logs might become outdated quickly with the emergence
of new technologies, heterogeneous deployments or change in
traffic patterns, number of users, construction of buildings and
other terrain changes. Another way of generating real data can
be through the use of mobile phone applications. However,
what if researchers require data for scenarios which are not
yet deployed in a real network? The techniques presented in
previous sections (except simulators), all require some starting
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real data but with the advent of AI based next generation
networks, there exists the potential of new or anticipated
scenarios which do not exist in a real network. In such cases,
testbeds to generate real data are going to be the best option
for wireless communications community.

A. Phone applications and parametric subscriber/third-party
data

Many smartphone applications offer the ability to log
parameters such as RSRP, RSRQ, SNR, events occurring
(handover, cell re-selection), serving time, speed, height, cell
ID, along with timestamp and location (latitude, longitude)
information). As an example, one of the studies [113], used
a novel methodology of utilizing smartphone application,
based on the idea of participatory sensing, to collect real
LTE network data for building, training and evaluating the
performance of mobility prediction schemes in live network
[113]. The data in this case was the handover information
of the user. An android application, “LTE Discovery” was
installed on the smartphone to log the timestamp and new cell
IDs around the OU-Tulsa campus. This information was then
used to build a semi-markov model for mobility prediction.

The quality of data gathered through smartphone appli-
cations, however, depends on a number of factors, includ-
ing measurement capabilities of different smartphones and
GPS error inaccuracy for measuring heights and positions.
Smartphones equipped with barometers are likely to give a
better estimate of heights in scenarios with varying terrains.
In addition, transmitter parameters, such as type of antennas
and their characteristics remain unknown, unless the network
operator is involved. When the network operator is involved,
it is possible for the subscriber to obtain parametric data from
them. However, that type of data may be limited to a certain
number of possible configurations. For this reason and for
potential new scenarios, the solution may lie in resorting to
testbeds.

B. Testbeds

Field trials using testbeds generate real training data and
provide the most realistic picture of the network. An aerial
view of some of these testbeds is presented in Fig. 12. We
have summarized the existing and emerging testbeds in Table
III to make readers aware of current and emerging platforms to
access real data. Most of these testbeds are open, i.e., available
to external experiments. This will foster collaboration among
different academic institutions as well as with industry, which
will in turn enable the utilization of these existing facilities to
the fullest and accelerate quality research in the field.

Apart from individual testbeds, several federations or con-
sortiums of testbeds have been formed around the world. Some
key federated testbeds comprising of the testbeds in Table III
are presented in Fig. 13.

Examples of data collected from testbeds include data for
scenarios that are not fully and widely deployed yet, e.g.,
mmWave channel measurement data consisting of direction
of user movement with respect to BS-UE link, distance reso-
lution, the number of user locations and whether blockage is

present or not [147]. This type of data can be used for building
beam tracking algorithms. Other examples of data include
received signal strength indicator, electric vector magnitude,
packet and bit error rate data from CORNET testbed [148]
and massive MIMO data from LuMaMi testbed such as
signal to noise ratio (SNR) and bit error rate for different
antenna configurations and modulation schemes [149]. These
types of data can provide flexibility to researchers for design
and testing network scenarios using a much wider range of
parameters, which is difficult to obtain from network operators
otherwise, due to the high probability of network impairment
when varying parameters too much in live networks.

C. Lessons learned

One way of getting access to real data to augment scarce
data can be utilizing historic logs of data gathered by other
researchers. However, these logs can become outdated. Lack
of diversity in the COP-KPI data is another problem when data
is obtained through logs. Testbeds is another way to generate
real data and is particularly useful to test new or anticipated
scenarios which do not exist in a real network. Key features of
several federations and individual testbeds around the world
have been presented in III that can assist the readers in the
choice of testbed for their works.

VII. CONCLUSION AND DISCUSSION

In this paper, we have presented an overview of key tech-
niques in literature to address the data scarcity challenge and
presented some emerging new techniques that can be applied
to radio access networks in the wireless communication do-
main to solve this problem.

Table IV summarizes the data augmentation techniques for
handling scarce datasets in mobile networks. The typical use
cases targeted in existing literature include mobile traffic maps
generation using scarce CDR data, spectrum sensing, MDT-
based outage detection, CSI/RSS for localization, BS trace
data for performance analysis, network power minimization,
optimizing BS Tx power using UE SINR data, network pa-
rameter configuration optimization for power control and user
scheduling, resource allocation, traffic load based energy sav-
ing, CQI and RSS prediction, radio environment map recon-
struction, channel estimation in Massive MIMO systems and
discovering user patterns using user trajectory data. The tools
in existing literature to address these use cases include GANs
and its variants, transfer learning, autoencoders, interpolation
techniques, simulators and testbeds. While these techniques
have proved to be beneficial for particular use cases, the
generalization ability of a particular technique to different
scenarios remains a challenge. Another notable challenge is
the applicability of these techniques to highly dynamic or
mobile environments. Efforts are also being made to reduce the
training time of machine learning based models and modifying
them for more robustness.

It should be noted however, that the success of any tech-
nique for solving the data scarcity challenge depends on a
number of factors, including type of data under consideration,
number of transmitter and receivers, distributions of users and
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Fig. 17: Decision flowchart for the selection of data augmentation technique for handling scarce datasets in mobile networks.
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base stations in a given area, distribution of measurement
data, level of accuracy required, measurement capability of
receivers, dynamics of propagation environment, propaga-
tion modeling accuracy, time and computational resources
available. Also, highly dynamic spatio-temporal environment
would greatly hamper the outputs of techniques covered in
this paper. In that case, using data through simulations and
testbeds may provide the best option. Further options on
addressing the data scarcity challenge for highly dynamic
environments is out of the scope of this work and can be
considered as part of a future study. Therefore, while a certain
technique might work well in a particular scenario, it is
likely to perform poorly in other scenarios. It should also
be noted that the selection of a performance metric to assess
the accuracy of a particular method is important too. As an
example, if the metric of mean residual error is used to access
Kriging accuracy, it would always yield zero, since this type of
interpolant satisfies the unbiased-ness condition, and so some
other performance metric, like the average relative error would
be more appropriate in this case.

Finally, based on the analysis from literature and domain
knowledge, in order to assess the applicability of a partic-
ular method, the tree diagram in Fig. 17 is aimed to assist
researchers and network operators in choosing the appropriate
techniques based on available information. We start the figure
by the red box, ‘Insufficient data’. The first question in the de-
cision figure is whether the data required is for completely new
or unseen scenarios (e.g., 6G drones to terrestrial networks
that are not yet deployed) or whether the data required is for
scenarios already present in today’s networks. In the former
case, the only options are utilizing testbeds and simulators to
depict new use cases. In the latter case, if the data is non-
representative (i.e., very few data points are available that
might not represent the scenario very well), the options are
again to generate more synthetic data through simulators or
real data through testbeds and mobile applications.

However, if the data is representative, low dimensional in
nature (e.g., spatial only), and exhibits some correlation (e.g.,
RSRP values that are correlated with distance), the choice
of methods depends on whether the propagation environment
parameters (e.g., frequency, path loss exponent) are known or
not. If these parameters are known, along with knowledge of
receivers’ SNR and transmit power (through e.g., operator),
then SNR based method in Section III-B4 can be used. If
transmit power is known, but receivers’ SNR is not known, but
antenna characteristics (e.g., antenna tilt, patterns) are known,
then the STM method in Section III-B5 can be used. If SNR
is not known, and antenna information is also not available,
then based on the propagation environment and transmit power
information only, three methods described in Section III-B,
AOA, RSSD and RSS can be used.

If the low dimensional data is correlated, but we do not have
information about propagation environment or transmit power,
choice of interpolation method can be done on the based on
other contextual information, such as network geometry, which
if known, leads to cluster-based interpolation in Section III-A2.
If, along with network geometry, transmitter locations are also
known, then the triangle method in Section III-A1 can be a

possible choice. If, however, the network geometry is also not
known, but the data forms a low-rank matrix (e.g, ultra-dense
high frequency scenario), then matrix completion in Section
II-A can be a choice. Otherwise, decision is made by assessing
whether the underlying data surface is mathematically smooth
or not. By smooth, we mean differentiable and continuous
surface. In case of smooth surface that requires extrapolation
of data, kriging, GIDS, MSM, and Splines can be used and
where extrapolation is not required, all interpolation methods
in Section II can be used with the exception of natural
neighbors, which can be used only if all data points are
inside the convex hull of location measurements. In the case
of non-smooth surface that requires extrapolation, kriging,
GIDS, MSM can be used, and if the non-smooth data surface
requires interpolation only, then kriging, GIDS, MSM, Nearest
neighbors, natural neighbors are the choices, since splines
and IDW can be used on smooth data surfaces only. The
exception here is again natural neighbors, which can be used
only if all data points are inside the convex hull of location
measurements.

If the low dimensional data does not exhibit any correlation,
we arrive at the decision block that coincides with the case
of high dimensional data (e.g., spatio-temporal tabular data
with multiple features) nature of data. In these cases, if the
data has many latent features, then VAEs in Section IV-B
can be used given the prior distribution of latent features is
known or can be approximated, otherwise GANs discussed
in Section IV-A can be the choice since they do not require
the knowledge of prior distribution of latent features. On the
contrary, if the low dimensional data does not exhibit any
correlation and also does not have enough latent features, then
the decision is made based on the availability of any prior
knowledge about the distribution of data, which if unknown,
leads to the augmentation of data through testbeds, simulators
and mobile application, and if known, leads to the possible
solution of transfer learning (if data from a similar domain is
available), otherwise, few-shot learning can be the choice.

VIII. FUTURE DIRECTIONS

Since the advanced machine learning methods, such as
GANs, transfer learning and few short learning are much
less explored for different telco use-cases, as compared to
techniques such as interpolation methods, more investigation
of these techniques in telco domain in needed. Particularly the
potential of transfer learning remains unexploited. Future work
focused on questions on what to transfer, where to transfer and
how transfer while taking into account domain knowledge of
RAN may help avail the full potential of transfer learning for
wireless networks.

Similarly, in GANs, research questions such as how much
minimum data is needed to train a generator for given type of
RAN data and problem is an important direction to exploit the
full potential of GANs and their limits on synthesizing RAN
data. A recent work explores this question [150] indicating
significance of this research direction.

Moreover, solutions that have the scalability to generate
high dimensional data, robustness to highly dynamic real
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environments and the capability to take conditional context
of the required network conditions into account can also be
another future direction.

Another research direction worth exploring to address the
data sparsity challenge in wireless communication domain is
by leveraging active learning [151], which harnesses the power
of machine learning together with the experience from domain
expert.

Most current machine learning based approaches to enrich
training data are predominately used as black-box models,
allowing little interpretability. Therefore, another future direc-
tion can be to design gray-box (or hybrid) machine learning
models (e.g., GANs) by combining domain knowledge and an-
alytical modeling with machine learning. This can bring model
interpretability and therefore improved ability to extrapolate
beyond the exposed training data distributions.

Validating the recent and new developed methods and
solutions on real data from operators and testbeds can also
be a focus of future work.

There is also a need for datasets in this domain to be
publicly accessible to enable the research community to devise
practical solutions that can be benchmarked. One such initia-
tive in this direction was taken in the form of CRAWDAD
repository [152].

Recent advancements in Open RAN might also help the data
scarcity challenge as Open RAN introduces a set of open stan-
dardized interfaces to interact, control and collect data from
every node of the network [153]. However, the issue stemming
from sparsity of data (resulting from operators trying a limited
range of COPs that leads to a sparse data distribution) will still
remain as Open RAN will not allow experimentation on a live
network. Consequently, the exploration and advancements of
the techniques discussed in this survey will be required.
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TABLE III: Worldwide existing and emerging testbeds for solving data scarcity problem.

Testbed Location Key Features

NITOS
[154] [155]

NITlab, University of
Thessaly (UTH), Volos,

Greece

- Open (facilities available to external experimenters)
- Over 100 wireless indoor and outdoor nodes

- 45 nodes equipped with a mixture of Wi-Fi and GNU-radios
- One Cloud installation with 200-cores

- Multiple wireless sensor network deployments
- Cameras, temperature and humidity sensors

- Software defined radio testbed with 10 USRP devices
- Two programmable robots provide mobility

- WiMAX/3G/LTE technologies
- 5G virtual infrastructure provisioning by 5GINFIRE [156]

6GIC
[157] - [160]

ICS, University of Surrey,
Guildford, UK

- 4G LTE, 5G NR, 6G (ongoing)
- 4km2 comprising indoor and outdoor environments

- Outdoor: 4G ultra-dense C-RAN comprising 3 macro cells, 39 LTE-A TDD
small-cell sites, operating at 2.6 GHz, 1x 4G FDD site operating at

700 MHz, 8x 5G NR TDD sites, operating at 3.5 GHz
- Indoor: 6x TDD and 6x FDD cells over 2 floors, and Wi-Fi APs

- 28 GHz (PtP), 60GHz (PtMP) mmWave and satellite backhauling also supported
- Core Network supports separate 4G and 5G core segments

- Supports broadband mobile radio
- Fixed core network and service platform based on software defined networking

- Supports Internet of Things

ORBIT
[161] [162] [163]

WINLAB, Rutgers University,
USA

- Open: available for remote or on-site access
- Radio grid with 20x20 two-dimensional grid of programmable radio nodes

- Outdoor ORBIT network provides a configurable mix of both high-speed cellular
(WiMAX, LTE) and 802.11 wireless access

- SANDBOX networks used for debugging and controlled experimentation
- Software defined networking (SDN) resources

- Cloud resources

PhantomNet
[164] [165]

Flux Group, University of
Utah, USA

- Remotely accessible and sharable
- Mobility testbed

- Built on top of Emulab
- EPC/EPS software (OpenEPC), hardware access points (ip.access eNodeB), PC

nodes with mobile radios (Nexus 5 phones and SDR-based)
- Provides configuration directives and scripts

LuMaMi
[166] [167] [168]

Lund University, Sweden

- Real time 128-antenna MIMO test bed
- National Instruments USRP RIO SDRs

- LabVIEW system design software and PXI platforms
- Mobile base stations

- Used for channel sounding, high speed data streaming, evaluation of baseband
solutions, assessing circuit design

- Demonstrated mobile multi-user tests with University of Bristol [169]

Firecycle
[170] [171]

Intrusion Detection Systems
Group, Columbia University,

USA

- Scalable test bed for large-scale LTE security research
- Implement, test, analyze impact of security attacks against LTE mobility network

- Prototyping and testing attack mitigation strategies for future cellular networks
- Implemented on OPNET

Berlin LTE-A
[172] [173] [174]

Center of Berlin, operated from
Fraunhofer HHI, Deutsche
Telekom Laboratories and
University of Technology,

Berlin

- 3 base station sites with 9 sectors
- Incorporates LTE key features: frequency dependent scheduling in 20 MHz
bandwidth, adaptive MIMO mode selection for 2x2 MIMO utilizing spatial

multiplexing, and low round-trip delay on the PHY layer of 8 m
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CEWiT
LTE and 5GNR

[175]
IITMadras Research Park,

Chennai, India

- 2 types of testbeds based on: 1) CEWiT hardware 2) TI’s multi-core DSPs
- Hardware is made using SDR radio nodes

- LTE PHY for UE and eNB has been developed in collaboration with IITM
- Basic implementation of LTE L1 downlink and uplink chains

- L2 MAC, RLC and a thin layer of PDCP
- Both eNodeB and UE implementations

- End-to-end IP application flow both in DL, UL
- Supports 3GPP Release 8 specifications

- Supports up to 10 MHz bandwidth and can be extended to 20MHz
- 5G NR for sub 6GHz and mm wave under development

TitanMIMO-6
[176] [177]

Nutaq, Québec, Canada

- Sub 6 GHz wideband Massive MIMO testbed
- FDD+TDD capabilities

- Up to 56 MHz real-time baseband processing
- Radio tumble up to 5 GHz

- Nutaq’s SDR systems (PicoSDR) can be combined with TitanMIMO system
to build up complete HetNet, MUMIMO or CRAN testbed solutions

- Enabling evaluation of interoperability behavior for various deployment scenarios

Aalto 5G research
infrastructure

[178]

Otaniemi, Espoo,
Finland

- Network slicing
- Support for NB-IOT to be used for IoT hackathon

- Mobile and edge computing, VR/AR, Gaming, Industrial Internet
- Part of 5G TNF

University of
Helsinki Test

Network
[179]

University of Helsinki,
Kumpula campus,

(Exactum building), Finland

- 17 Nokia Flexi Zone Indoor Pico BTS (eNBs)
- Band: 2600 MHz (E-UTRA 7) FDD
- Sync: 1588v2 (PTP) / GPS / Sync-E

- 3 connections to cores through VLANs: UH core(s), Aalto core and Nokia core
- Part of 5G TNF

VodaPhone
Chair

[180] [181] [182]
TU Dresden, Germany

- Online Wireless Lab (OWL) testbed
- Software Defined Reconfigurable Radio Devices

- LabVIEW/LVC in combination with USRPs
- Many projects and startups, e.g., 5G Lab Germany, 5GNetMobil, 5G Picture,

HPE-5G-Testbed, Airrays GmbH [183]

CORNET
[184] [185]

Virginia Tech University, USA

- University-wide testbed
- Software-defined radios, cognitive radio and dynamic spectrum access

- 48 indoor SDR nodes, 14 fixed outdoor nodes, 6 mobile units (O-CORNET)
- A few LTE-capable nodes (LTE-CORNET)

- CORNET nodes are remotely accessible
- Awarded the grant from DURIP for upgrading to LTE and LTE-A

- Outdoor network of 15 radio nodes and 2 mobile nodes

5G Playground
[186]

Fraunhofer FOKUS and TU
Berlin campus, Germany

- Empowers the 5G Berlin testbed
- Support for multi-slicing

- Ultra-reliable, low latency communication in Industrial IoT lab of FOKUS
- Automotive testbed environment in underground parking of FOKUS building

- Coverage of dense urban areas, like portable 5G edge nodes in progress
- 3 Toolkits: Open5GCore, OpenSDNCore and Open5GMTC

Tampere
University

Wireless Test
Networks

[187] [188]

Tampere University, Hervanta,
Finland

- Part of 5G TNF
- FDD-LTE operating at band 1, 7, and 28 for mostly indoor coverage

- TDD-LTE operating at band 38 to provide campus wide outdoor test network
- Upcoming outdoor 5G test network in band n78 with 60 MHz channel

- LoRa: Digita’s LoRaWAN test network in ISM band at 868 MHz

FUSECO
Playground

[189]
Fraunhofer FOKUS Institute,

Berlin, Germany

- Open IMS Core solution
- Heterogeneous indoor and outdoor radio access technologies

- DSL/WLAN/2G/3G/4G-LTE/LTE-A and soon 5G
- M2M communication, IoT, sensor networks
- SDN/OpenFlow, NFV cloud environments

- Toolkits: Open5GCore, OpenSDNCore and Open5GMTC, OpenMTC,
Open Source IMS Core, OpenStack-based Cloud Testbed, OpenXSP



28

5G Ready
Trial Platform

[190]
Fraunhofer FOKUS, Berlin,

Germany

- Consolidated turn-key solution of the Fraunhofer FOKUS software components
- Addresses trial needs of emerging network infrastructures -

- Edge Instantiation: solution for micro-operators and local networks, provides
customized IoT connectivity for x100 devices.

- Data Center Instantiation: multi-slice environment, support for multiple parallel
instances of IoT and multimedia communication

- Technology Elements: Virtual Core network, Network slicing, IoT support,
Low delay network, Dynamic spectrum access and management

Ericsson 5G
[191] [192]

Ericsson, Stockholm, Sweden

- Live testing of key capabilities, such as multipoint connectivity with
distributed MIMO and 5G-LTE dual connectivity

- 5G devices and base stations operate in 15 GHz band
- TDD and OFDM

- Up to 256 QAM modulation in downlink and up to 64 QAM in the uplink
- mm-Wave testbeds 15 GHz and 28 GHz

- Bandwidth is 80 MHz, centered at 3.5 GHz
- Massive MIMO antenna array of 128 cross-polarized antennas

SK Telecom
5G Playground

[193] [194] [195]

SK Telecom R&D Center,
Bundang, Korea

- Developing a centimeter-wave (cmWave) 5G radio system with Nokia
- 5G 3D system level simulator with Nokia and Ericsson

- 3D beamforming techniques with large scale array antennas with Samsung
- Developing Anchor-Booster Cell and Massive MIMO with C-RAN with Intel

- Achieved 19.1Gbps transmission speed over the air
- Futuristic services including 4K live broadcast system and AR/VR

5GTN
(Linnanmaa)

[196] [197] [198]

University of Oulu and
VTT Technical Research

Centre of Finland

- Multi-access edge computing
- Core network in cloud environment

- Cloud systems for applications
- Secure connection to other 5G sites worldwide, 10 Gb VPN

- Part of 5G TNF

TurboRAN
[199]

AI4Networks Research Center,
University of Oklahoma,

Tulsa, USA

- Developing first end to end programmable cellular test bed for enabling
AI based SON research towards 5G and beyond

- Complete integrated mobile cellular network over 300,000 m2 area
- Tier 1: 4 outdoors macro cells on 1.2-6 GHz HF band

- Tier 2: 16 small cells (programmed to pico or femto cells). 8 small cells can
operate on the HF band, other 8 can operate on the unlicensed mmWave

- Both tier cells are programmable
- Both tier cells connected to EPCs and a big data processing Hadoop cluster

- Hadoop cluster: 1 high performance master node, 15 slave nodes with
high-capacity data modems

- Support both high mobility and low mobility users

OAI
[200]- [203]

EURECOM, France

- Open-source platform
- 8-node testbed, equipped OAI compatible RF front-ends, UEs and VMs

- 4 machines that can be used for running OAI as eNodeB
- 4 nodes that are equipped with COTS UEs

- 2 physical layer emulation modes
- 64 antenna Massive MIMO testbed

.

Munich
[204] [205]

TU Munich, Munchen,
Germany

- 5G RAN with two sectors, each having carrier frequency: 3.4 GHz,
bandwidth: 40 MHz, transmission power: 5 W antennas: up to 8

- 5G Mobile Terminals with vehicular speeds up to 50 km/h, enablingV2X
- 5G Core network: HW/SW platform

- Hardware: in-house platform of several dozen servers representing a data centre
- Software: extended network emulators, controllers, open-source and proprietary

switch implementations
- Testbed can deploy virtual networks with different topologies as needed

- 5G Core network supporting functional split – SDN – NFV Orchestration
- Distributed data centres for mobile edge computing use cases
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Perform Networks
[206] [207] [208]

University of Malaga, Spain

- T2010 conformance testing units by Keysight Technologies
- LTE release 8 small cells (Pixies) by Athena Wireless working on band 7

- Polaris Core Network Emulator
- Several LTE UEs, working on different bands

- ExpressMIMO2 and USRP SDR cards
- SIM cards from an Spanish LTE operator to be used on commercial deployments

Centria’s
Test Network

[209]

Centria University of Applied
Sciences,Ylivieska, Finland

- TDD-LTE operating at band 40 and 42 for both outdoor and indoor coverage
- Upcoming 5G test network in band n78 with 60 MHz channel outdoor network

- Implementation plan of first 5G Non-Standalone during 2019
- Later 5G Standalone during 2020

- Part of 5G TNF

w-iLab.t
[210] [211] [212]

Ghent and Zwijnaarde,
Belgium

- w-iLab.t Office testbed: three 90 m x 18 m floors of iMinds office in Ghent
- w-iLab.t Zwijnaarde testbed: 5 km away from w-iLab.t Office in Zwijnaarde

- Sensor nodes, Wi-Fi based nodes, sensing platforms, and cognitive radio
- Heterogeneous wireless/wired experiments

- Virtual Walls: Virtual Wall 1 and 2 containing 206 and 159 nodes respectively
- OpenFlow experiments

- 20 programmable moving robots

5TONIC
[213]

Madrid, Spain

- 9 members: Telefonica, Institute IMDEA Networks, Ericsson, Intel,
Commscope, Universidad Carlos III de Madrid, Cohere Technologies,

Artesyn Embedded Technologies and InterDigital
- NFV orchestrator, implemented with Open Source MANO (OSM)

- Dedicated NFVI for 5GINFIRE: 3 server computers, each with six cores,
32GB of memory, 2TB NLSAS, network card with 4 GbE ports, DPDK support

- Second NFVI: 2 high-profile servers, each equipped with eight cores in a
NUMA architecture, 128GB RDIMM RAM, 4TB SAS and eight 10Gbps

Ethernet optical transceivers with SR-IOV capabilities

University of
Bristol 5G

[214]
University of Bristol, England

- Multi-site network connected through a 10 km fibre
- Core network is located at HPN Lab at the University of Bristol

- Extra edge computing node is available at Watershed
- Access technologies are located at Millennium Square for outdoor

coverage and “We The Curious” science museum for indoor coverage
- Multi-vendor SDN enabled packet switched network

- SDN enabled optical (Fibre) switched network
- Nokia 4G and 5G NR

- Self-organising multipoint-to-multipoint wireless mesh network
- LiFi Access point, Cloud and NFV hosting

- 2 different NFV orchestration and management solutions:
Open Source MANO , NOKIA CloudBand

- 2 cloud/edge computing solutions:Openstack Pike, Nokia MEC
- 1 SDN controller: NetOS

D-15 Labs
[215]

Ericsson, Santa Clara, CA,
USA

- Validation and development platform for 5G use-cases, leverages cloud edge
support, core network, and AI-based management and orchestration

ENCQOR 5G
[216]

Ontario Region, Canada

- iPaaS Services: 5G connectivity of 5 Gbps Mobile Throughput and sub 5ms
latency, cloud services of IoT Accelerator, emulation cloud, edge computing
- iPaaS Infrastructure: 5G mobile user equipment (android-based Qualcom

terminals operating at 3.5 GHz), 5G radio access technology
(NR/LTE/CAT-M1/NB-IoT), 5G transport/backhaul, distributed core network

and programmable data plane
- Future features expected by 2021 include: 5 Gbps 5G NR, sub 5ms latency,
predictive analytics, federated network slicing, real time machine learning / AI

- Technology partners: Ericsson, Thales, CGI, IBM, Ciena
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TABLE IV: Review of modeling techniques for handling scarce datasets in Radio Access Networks (RAN).

Reference Year Modeling
technique

Use case and data Data type Use-case type
w.r.t. OSI

layer

Use-case type
w.r.t. level of

analysis
[83] 2020 Few-shot learning eNodeB performance

metric analysis using cell
trace data

Tabular data Network System

[84] 2021 Few-shot learning Modeling indoor pathloss
model at 28 GHz using

RSS data

Tabular data Physical Link

[144] 2020 Few-shot learning
+ Transfer
learning

Network power
minimization in C-RAN
for resource management

using UE SINR data

Tabular data Physical System

[89] 2019 Transfer learning Identifying optimal
deployment density of

the BSs given a BS
transmit power w.r.t.
spectral and energy

efficiency of the network
using UE SINR data

Tabular data Phyical System

[90] 2019 Transfer learning Network parameter
optimization for uplink
power control and user
scheduling using Cell

KPI/counter data

Tabular data Application System

[91] 2014 Transfer learning BS ON/OFF switching
for energy saving using

traffic load data

Tabular data Data Link System

[92] 2020 Transfer learning Radio map prediction
under different antenna
tilt using UE RSS data

Tabular data Physical Link

[93] 2021 Transfer learning Cell performance
prediction (CQI and

Active UE count) using
cell KPI/Counter data

Tabular data Application System

[94],
[95]

2019-
2021

Transfer learning Network service
performance prediction

using testbed traces

Tabular data Network System

[87] 2020 Transfer learning
+ GAN

REM generation Spatial data Physical System

[19] 2019 GAN Synthetic CDR
generation using CDR

data (call start hour and
call duration)

Tabular data Network System

[81] 2020 ZipNet-GAN Infer fine-grained traffic
patterns from course

aggregates using CDR
data

Spatio-
temporal data

Network System

[82] 2020 GAN Cell outage detection
using MDT data

Tabular data Application System

[86] 2020 GAN REM generation Spatial data Physical System
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[114] 2020 Variational
autoencoder

Anomaly detection and
root cause analysis

(RCA) in RAN using
KPI/KQI data

Tabular data Application System

[115] 2018 Adversarial
autoencoder

Detecting anomalous
behavior in wireless

spectrum using power
spectral density data

Tabular data Network System

[13],
[76],
[77],

[67], [72]

2015-
2020

Context-aware
interpolation

REM construction using
BS location estimated

through reverse
triangulation

Spatial data Physical System

[56],
[64],
[60],

[62], [70]

2018-
2020

Kriging
interpolation +

variants

REM generation Spatial data Physical System

[32] 2019 Correlation-based
interpolation

Crowdsourced
spatio-temporal REM

generation

Spatio-
temporal data

Application System

[217] 2019 Adaptive spatial
interpolation

Uplink channel
estimation in 3-D

massive MIMO systems

Spatial data Physical Link

[53] 2019 Adaptive
triangulation -

induced
interpolation

Multiple REM generation Spatial data Physical System

[65] 2019 NN-enhanced,
Kriging

interpolation

REM generation Spatial data Physical System

[33] 2018 Congregate group
pattern

Signaling data (User
trajectory data) for

discovering congregate
group patterns

Spatio-
temporal data

Network System

[34] 2020 Kriging, moving
average, matrix

completion, IDW,
nearest neighbors,
natural neighbors,

spline
interpolation

MDT coverage map
(RSRP) construction

Spatial data Physical System

[57] 2019 Kriging
interpolation

REM generation from
crowdsourced data

Spatial data Application System

[49] 2011 Kriging, MSM
and GIDS

interpolation

REM construction from
total received signal

power

Spatial data Physical System

[42] 2012 IDW, adaptive
IDW, MSM
interpolation

REM construction Spatial data Physical System

[50] 2014 Nearest neighbor,
IDW, Kriging
interpolation

Interference map
estimation of MDT

reports in cognitive radio
networks

Spatial data Physical System
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[51] 2012 Nearest neighbor,
natural neighbor,

triangulation-
based

interpolation

Interference map
generation in cognitive

radio networks

Spatial data Physical System

[52] 2013 Nearest neighbor,
IDW, Kriging

Interference maps for
licensed shared access

Spatial data Physical System

[14] 2012 Natural neighbor,
kriging and spline

Interference cartography
generation in cognitive

radio networks

Spatial data Physical System

[54] 2010 Kriging Predict network coverage
in wireless networks

Spatial data Physical Link

[56] 2018 Kriging REM construction Spatial data Physical System

[59] 2018 Kriging REM construction in
cognitive radio networks

Spatial data Physical System

[60] 2019 Kriging, nearest
neighbor, IDW

REM construction based
on RSSI mobile

crowdsensing data

Spatial data Application System

[61] 2019 Nearest neighbor,
IDW, Kriging

REM construction for
spectrum sharing

Spatial data Physical System

[62] 2020 Nearest neighbor,
IDW, Kriging

REM construction Spatial data Physical System

[63] 2014 Kriging REM generation for
coverage mapping

Spatial data Physical System

[64] 2028 Kriging REM generation for
coverage mapping

Spatial data Link System

[65],
[67]

2019-
2020

Hybrid neural
networks and

Kriging
interpolation

REM generation Spatial data Physical System

[69] 2015 Kriging, splines,
moving average,

triangulation-
based

interpolation

Coverage extension and
prediction with signal
strength crowdsourced

measurements

Spatial data Application System

[70] 2019 Nearest neighbor,
IDW, Kriging

REM construction for
military cognitive

networks

Spatial data Physical System

[71] 2018 RSS and RSSD
based methods

REM enrichment using
RSS measurements from

sensors

Spatial data Physical System

[72] 2015 STM method,
location

estimation-based
method, IDW,

Kriging

REM construction using
omnidirectional and

directional transmitter
antenna

Spatial data Physical System

[75] 2015 RSS-based
methods

REM construction in
fading channels

Spatial data Physical System

[76] 2018 RSS-based
method, kriging

REM construction Spatial data Physical System
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[77] 2010 AOA based and
SNR based

methods

REM construction Spatial data Physical System

[145] 2022 Synthetic data
generation through

Atoll simulator

Cell outage detection and
diagnosis using

SINR-based REM maps

Tabular data Physical System

[85] 2022 Synthetic data
generation through

Atoll simulator

Modeling outdoor
propagation model using

RSS data

Tabular data Physical System

[146] 2022 Synthetic data
generation through

SyntheticNet
simulator

Optimization of A5
mobility parameters

using RSRP, SINR, and
handover success rate

data (HOSR)

Tabular data RSRP/SINR:
Physical,
HOSR:

Network

System

[113] 2016 Real data
generation through

smartphone
application

Building semi-markov
model based mobility

prediction schemes using
handover data

Tabular data Network System

[147] 2020 Real data
generation using
mmWave testbed

Building beam tracking
algorithms using
mmWave channel
measurement data

Tabular data Physical Link

[148] 2014 Real data
generation using
CORNET testbed

Evaluating real-time
radio spectrum access
using RSS, packet and

bit error rate data
(PER/BER)

Tabular data Physical Link

[149] 2017 Real data
generation using
LuMaMi testbed

Design and validation of
massive MIMO research
using SNR and BER data

for different antenna
configurations and

modulation schemes

Tabular data Physical Link
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