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Abstract- The advancement and standardization of the 

cellular network system require thorough investigation, 

analysis, and experimentation of novel protocols, 

architectures, and functionalities. In this regard, computer-

aided tools or simulators allow the execution of these 

requirements with the much-needed controllability, 

reproducibility, cost efficiency, and convenience. 

Simulators have been proven beneficial since the dawn of 

the cellular network era and are likely to be critical for the 

upcoming 6G development. However, mimicking such a 

complex network requires developing intricate and at the 

same time, practical simulators. One of the major concerns 

of the existing simulators is the computational complexity 

of modeling a realistic and complete network. This 

challenge is anticipated to exacerbate with the advent of 6G 

considering its scope and peculiarities. In this article, we 

analyze the computational complexity of incoming 6G 

simulators and provide solutions to mitigate this issue. The 

presented novel framework for future simulators aims to 

transform the traditional way of building network 

simulators to serve the unprecedented demand of 6G. The 

presented use case highlights the efficacy of the proposed 

framework where we show a 100-fold improvement in the 

run-time performance of the innovative architecture 

compared to traditional simulators. 

 

I. INTRODUCTION 

The role of simulators has become increasingly important 

as cellular technology evolves to support more novel use cases. 

These simulators accelerate innovation and reduce the cost of 

research and development towards next generation networks for 

researchers, network vendors, and operators alike.  This is 

particularly true with the upcoming 6G network. For instance, 

up until 5G, one side of the network has always remained static, 

i.e., base station, while serving mobile users. However, in 6G, 

the network nodes are anticipated to become mobile as well, 

i.e., satellites and drones, bringing a totally different level of 

complexity in modeling the network. With this novel network 

deployment, analytical modeling, i.e., point processes and 

stochastic geometry, which work in 5G and other legacy 

network deployments with static elements, might not remain  

 

insightful anymore. Thus, it can be concluded that simulators 

will play even more crucial roles in modeling and simulating 

key technologies and components of the upcoming 6G network.  

Another major distinction of 6G vis-à-vis 5G is the 

ubiquitous use of Artificial Intelligence (AI). Unlike in 5G 

where AI is still an option, AI is envisioned to become a 

fundamental part of 6G playing pivotal roles in the entire 6G 

ecosystem. However, the utility of the AI models is inherently 

reliant on rich training data. However, real network data for 

training AI models is currently sparse and scarce due to several 

reasons including privacy concerns, high cost and potential 

degrading impact on live networks of any data gathering 

campaigns, among others. For a detailed review of sparsity 

challenge in cellular networks, reader is referred to [1]. The 

challenge of AI training data sparsity in cellular networks 

further highlights the crucial function of simulators in future 

cellular networks. Using simulators, synthetic data can be 

generated to enrich the sparse data from the real network that 

can be used to effectively train the AI models. However, large 

data generation through simulators can become time-

consuming if not accompanied with computationally efficient 

methods. In this article, we address one of the most notorious 

challenges that debilitate the utility of simulators for the next 

generation networks; the inherent computational complexity 

brought by the goal to make simulators realistic and complete. 

The computational and time efficiency becomes increasingly 

crucial when huge data is required to enable AI in 6G networks. 

The contributions and organization of this paper can 

be summarized as follows: We first present a short look ahead 

on what 6G is anticipated to look like and explicate the 

challenge of computational efficiency, analyze how it currently 

affects 5G, and the future implications in developing 6G 

simulators (Section II). We then present potential solutions and 

recommendations to address these computationally demanding 

aspects of network simulation and combine these solutions in 

an architecture to enhance the computational efficiency of 

future simulators (Section III). This proposed architecture is 

computationally efficient without compromising realism and 

completeness of the functionalities and features. Then, we 

evaluate the potential of the proposed simulator architecture 

against typical simulator designs in generating large amounts of 



data to effectively train AI-models (Section IV). In Section V, 

we present the key conclusions and insights of this work. 

 

II. THE CHALLENGE OF COMPUTATIONAL 

EFFICIENCY IN FUTURE MOBILE NETWORK 

SIMULATORS 

A. 6G Anticipations: A Look Ahead to Next Generation 

Networks 

Although no standard has yet been crafted for 6G, based on 

the current trend, it is not difficult to anticipate where 6G is 

heading and what will it look like. At this early point in time, 

several studies are available in the literature ranging from the 

anticipated architecture, potential applications and use cases, 

and the expected enabler technologies to support 6G [2-4]. In 

terms of the architecture, one of the most evident distinctions of 

6G from 5G is the utilization of diverse network types in the 

form of 3D networking. In addition, 6G is likely to sustain a 

much broader range of use cases and applications compared to 

5G. Some of the most notable novel applications are flying cars, 

the internet of everything, multisensory extended reality (XR), 

and wireless brain computer interaction. To realize these use 

cases, the next generation networks will leverage novel sets of 

enablers such as ultra-massive MIMO, Thz band, quantum 

communication, blockchain, optical wireless technologies, and 

reflective surfaces. 

In the wake of the anticipations, it is evident that 6G 

requires trial, evaluation, and validation procedures, that are 

more flexible and extensive than they have ever been. As a 

result, the simulators to support the timely development of the 

incoming 6G network deserve more attention. Particularly, 

modeling the above-mentioned architecture, use cases, and 

enablers of 6G realistically and completely brings 

unprecedented impediments to the computational efficiency of 

next generation simulators. In the next subsection, we discuss 

the foreseen challenge of computational complexity with 

reference to 5G network simulators. 

B. Computational Efficiency as a Bottleneck in Simulator 

Development 

The computational efficiency requirement for 6G simulator 

conflicts with the goal of creating the simulator as realistic and 

complete as possible. All three of these are not only desirable 

features for research and development of 6G systems but are 

key necessities for generating synthetic data to train AI for 

enabling zero-touch operation and optimization in 6G 

networks. Fig. 1 shows the relationship between realism, 

completeness, and computational efficiency of mobile network 

system level simulators. Ideally, a simulator should incorporate 

a high degree of realism, completeness and at the same time, 

utilize a small amount of computational resources in terms of 

time, memory, and processing power. Realism in this context is 

measured by the degree of realistic implementation of features 

such as propagation model, mobility model, PHY layer model, 

radio access network procedures, and core network model to 

name a few. Meanwhile, completeness refers to aspects such as 

the complete implementation of technology enablers, 

comprehensive incorporation of configuration and optimization 

parameters (COPs) and key performance indicators (KPIs), and 

integration of a wide range of use cases and applications. 

However, with the current approach of simulator development, 

computational efficiency deteriorates rapidly with the increase 

in realism and completeness. To avoid unbearable 

computational costs, most of the existing simulators tend to 

employ more abstraction and oversimplification of the 

computationally intensive tasks and incorporate fewer features 

and functionalities, thereby compromising realism or 

completeness or both. Some well-known academic simulators, 

such as ns-3 [5] and Vienna [6], have managed to render a 

moderate amount of realism and completeness, but at the cost 

of high computational costs. On the other hand, commercial 

simulators such as Atoll [7], are usually utilized in network 

planning and thus, give particular attention to realistically 

modeling the propagation model. But to improve the 

computational efficiency, these commercial simulators usually 

eliminate the support for mobility or handover and usually 

implement only a handful of COPs and KPIs thereby offering 

little completeness. Despite the good intention, the 

simplification and downscaling of the nuances during simulator 

development to induce efficiency in the run time may lead to 

undesirable results. 

Figure 1. Relationship between realism, completeness, and 

computational efficiency in mobile network simulators 

 

C. Computational Demanding Aspects of Running 

Simulations 

Table 1 shows the summary of some of the most 

computationally demanding tasks in simulating a cellular 

network. Among these components are the propagation model, 



MIMO precoding, mobility, network element size, compulsory 

use of AI, and reconfigurable intelligent surfaces. Moreover, 

this table also shows how these components are affecting the 

current 5G simulators and more importantly, their implications 

to the upcoming 6G technology. 

Selected computationally challenging components for 

running simulations are explored in further detail below: 

1. Propagation Model 

The increasing factors that must be considered in the 

propagation model to increase the accuracy (i.e., clutter 

type, vegetation, buildings, etc.) make it computationally 

expensive. In mmWave used for 5G, factors such as 

building materials absorption, vegetation, vehicles and 

even the effect of humans as blockage should be 

considered which further increases the complexity of the 

process. The incoming 6G will require an unprecedented 

amount of sophistication when it comes to propagation 

modeling. This is due to the anticipated utilization of the 

THz band which, compared to the GHz band used in 5G, is 

more demanding in terms of Line of Sight (LOS) 

requirements and is highly susceptible even to the slightest 

obstruction (i.e., a sheet of paper) [4]. To realistically 

model these peculiarities of the THz band requires 

considering more factors and thus, would require immense 

computing resources. 

 

2. MIMO Precoding/Beam Management 

The multiplicity of the utilized antennas to realize 

MIMO brings additional complexity due to an increase in 

the precoding matrices needed to be generated during the 

simulation. The available antenna configurations for 5G 

massive MIMO range from 16x16 to 64x64. With this 

much antenna, precoding matrices generation consumes 

more time when running simulations. The concept of ultra-

massive MIMO is proposed for 6G, wherein a plasmonic 

nano antenna array of size 1024x1024 is envisioned [2]. 

With this huge antenna configuration, the generation of 

precoding matrices will be daunting for the simulators. 

 

3. Mobility 

The constant variation in the location and environment 

as the users move leads to continuous updating of the signal 

strength during simulation. In addition, mobile users need 

to perform handover which is also computationally 

demanding. 5G is designed to support mobile users with a 

maximum speed of up to 500 kph. Calculation of the 

changes in the signal strength especially for high-speed 

Table 1. Summary of some of the most computationally demanding aspects when running a network simulator, how it affects 

simulation run time in simulating 5G network and the future implications on the upcoming 6G networks. 



users is an expensive task. Moreover, due to speed as well 

as the dense base station deployment, number of handovers 

increases. The maximum speed at which 6G will be molded 

is 1000 kph, making the calculation of the changes in the 

received signal more daunting.  

 

4. Huge Number of Network Elements and Connected 

Devices 

The number of network elements such as base stations, 

users, types of services, connected devices, configuration 

parameters, measured KPIs, and supported features 

directly affect the simulation run time. A recent article [8] 

highlights this dramatic increase in the simulation 

execution time with an increase in the network size. Based 

on this article, the simulation time showed a non-linear 

surge in time complexity increasing from less than 100 

seconds for 1000 nodes to more than 2000 seconds for 

3000 nodes scenario. Meanwhile, it is estimated that the 

connectivity density in 6G will reach far beyond 106 km2 

which is the density threshold for designing 5G [2]. With 

dense BS deployment supporting diverse types of users, 

use cases, and billions of connected devices, 

computationally inefficient simulators will fail to mimic 

the vastness of the 6G ecosystem.  

 

5. Network Deployment 

Meanwhile, one of the major game-changers that set 

6G apart from its predecessors is the introduction of 3D 

networking. The conglomeration of aerial and terrestrial 

base stations is expected to shift the way we analyze and 

simulate cellular networks. 3D networking is anticipated to 

bring a whole new level of complexity in simulating the 

network and making the aforementioned challenges even 

more daunting. For instance, the wide adaptation of drones 

will give birth to 3D handover. This, in turn, results in more 

sophisticated user mobility and handover model 

implementations. 

 

III. PROPOSED ARCHITECTURE TO ADDRESS THE 

COMPUTATIONAL COMPLEXITY OF NEXT 

GENERATION NETWORK SIMULATORS 

The usability and performance of a simulator are 

severely undermined if it fails to immediately test the use cases 

and generate results rapidly. Therefore, the new design, 

protocol, or algorithm evaluation, as well as data generation 

through such a simulator can become time-consuming if not 

accompanied by computationally efficient methods. Currently, 

several methods to speed up the simulation process for 5G 

networks are being leveraged. For example, several simulators 

such as Atoll, OMNET++ [9], MATLAB-Simulink [10], and 

SiMoNe [11], exploit parallel processing to improve the run-

time of simulations. Similarly, other simulators attempted to 

explore simulation speedup options to make up for high 

computational complexity either due to a large number of 

network elements, realistic modeling, or completeness. For 

instance, Vienna 5G has pre-generated channel traces while ns-

3 tries to perform link-to-link computation in parallel. 

Meanwhile, WiSE incorporates MIMO precoding matrices pre-

generation and smart beam sweeping link selection, in addition 

to parallel processing, to improve time efficiency [12]. 

 

Although some efforts are made to improve the 

computational efficiency of simulators, our extensive analysis 

of existing simulators shows that the bulk of the computational 

load is caused by their object-oriented architecture, where 

extensive iterative functions (e.g., for-loops) are used in each 

transmission time interval (TTI) to calculate KPIs. Taking this 

into consideration, there is a call for a major shift in designing 

a simulator that minimizes the use of iterative functions. In 

addition to the above-mentioned approaches, we highlight some 

key techniques for addressing computational efficiency while 

maintaining a high level of realism and completeness below. 

 

1) Pre-generation and Preloading of COP dependent KPIs: 

The performance of cellular networks, measured in terms 

of Key Performance Indicators (KPIs) may vary depending 

on configuration and optimization parameters (COPs) 

settings. COPs are the backbone of any cellular network 

system. These tunable COPs, depending on the set values, 

affect how the network performs. For instance, COPs such 

as tilt, azimuth, tower heights and azimuth determine 

several KPIs like coverage and reference signal quality that 

do not change with time-variant factors such as user 

mobility or channel variations but only with respective 

COP values. Therefore, these types of KPIs can be pre-

calculated even before the start of the simulation. 

Meanwhile, other KPIs vary not only with COPs but also 

with time variant factors. Examples of KPIs include 

throughput, handover success rate and quality of service 

and quality of user experience. Although these KPIs are 

also affected by COPs, their actual values cannot be 

predetermined unless the simulation is started, and users 

start to move around the network and request resources. 

Having this knowledge, instead of calculating all KPIs in 

each TTI, simulator design can divide KPI modeling into 

two categories: time-dependent and COP-dependent. All 

COP dependent KPIs such as reference signal received 

power (RSRP), reference signal received quality (RSRQ), 

geometric signal-to-noise-plus-interference ratio (SINR) 

also known as G-Factor, and slow shadowing can be pre-

calculated only once at the beginning of the simulation thus 

incurring only a small computation cost despite using 

extremely realistic models. These pre-generated KPIs can 

then be pre-loaded at the start of the simulation process. 

This leaves only time dependent KPIs such as 

instantaneous user SINR, physical resource block (PRB) 

usage, handover evaluation metrics, and throughput to be 

calculated in each TTI. 

 



Nonetheless, generating such voluminous amounts of pre-

generated COP-KPI data would need huge storage space, 

particularly if flexibility in the simulated scenario, e.g., in 

user mobility, is desired. To overcome this issue, cloud 

storage may be a viable alternative. Instead of keeping the 

pre-generated data on a local system, they can be saved in 

a data lake on the cloud. This data lake will include a rich 

collection of network scenarios and will be expanded 

further as new scenarios are executed. When needed, the 

pre-generated network data can be readily retrieved from 

the data lake. Given that storage is usually cheaper than 

processing power, and not as constrained resource in 

simulators as the simulation run time, this solution can 

offer desired degree of trade-off between simulator’s use 

case flexibility, storage capacity and run time. 

 

 

2) Modeling Mobility Innovatively Through Binning: In 

current simulators, especially those which are developed to 

provide a very high level of coverage prediction fidelity 

such as Atoll, mobility modeling is avoided as it is 

computationally very expensive, i.e., the next location of 

each UE must be calculated in each TTI and all the KPIs 

must be recalculated with respect to the new location of the 

UE. However, being the raison d’etre of mobile cellular 

networks, mobility is an essential feature of mobile 

networks and must be considered to achieve holistic 

performance evaluation and optimal design that consider 

mobility related KPIs and not only static coverage 

predictions. Particularly optimal mobility management’s 

contribution to system performance will increase 

drastically in 6G wherein ultra-high user speeds of up to 

1000 km/h are anticipated to be supported. To model user 

mobility while eliminating the associated computational 

cost, the binning approach can be leveraged. The key idea 

here is to divide the network area into bins (cubes in the 

case of a 3D network) and to model COP-dependent KPIs 

with respect to spatial bins in the network instead of the UE 

locations. Thus, pre-calculated COP-dependent KPIs, as 

explained above, can be used in each TTI for the bins to 

which the user is associated. This approach eliminates the 

need for recalculation of all KPIs in each TTI even with a 

large number of mobile users. Secondly, the binning 

approach will require recalculation of UE-specific KPIs 

only when the UE changes bin location and not at every 

TTI. 

 

3) Leverage AI to Model Computationally Intensive Tasks: 

Pathloss calculation is another computationally expensive 

task if modeled realistically, e.g., using raytracing. For 

instance, Atoll, by utilizing the ray-tracing model, yields 

far superior fidelity in coverage prediction than Vienna and 

ns-3, which use simple empirical and hence unrealistic 

propagation models. However, to offset the huge 

computational cost of raytracing’s, Atoll omits all 

dynamics in the simulation, such as dynamic PRB 

allocation and scheduling, as well as user mobility and 

detailed handover procedures and signaling. Therefore, 

Atoll, while being very powerful for cell planning, cannot 

be used for research and development of realistic mobile 

networks or optimization of any of the dozens of mobility 

related KPIs and COPs. In other words, the Atoll 

architecture, like many other simulators, trades realism in 

certain aspects for incompleteness to keep the 

computational cost low. To address this tradeoff in a more 

optimal fashion, the potential of AI is leveraged to model 

computationally demanding tasks such as radio 

propagation. This idea is recently demonstrated in a study 

[13] that shows it is possible to leverage machine learning 

to achieve comparable accuracy to raytracing in 

propagation modeling. Results from this recent study show 

that Light Gradient Boosting Machine (LightGBM)-based 

propagation model outperforms all empirical models (e.g., 

used in Vienna and ns-3) in terms of accuracy whilst being 

12x faster than raytracing used in Atoll. Similarly, authors 

in [14] propose a practical and accurate channel estimation 

for cell-free mmWave Massive MIMO framework based 

on the fast and flexible denoising convolutional neural 

network. 

 

4)  Enabling Parallelization and Distributed Processing:  

Although several existing simulators already support 

parallel and distributed processing, the majority of the 

existing simulators remain for-loops-based operations that 

do not allow parallelization. To enable parallelization, the 

conventional for-loop approach should be avoided by 

replacing them with paralleled matrix manipulations for 

most calculations. For example, interference calculation 

per PRB in each TTI can be modeled as a parallel-able 

matrix operation. In addition, the pre-loading will enable 

parallel processing of different COPs for COP-KPI 

combinatorial exploration and hence, will reduce the time 

complexity of COP-KPI data generation with higher 

computational resources. 

 

5) Build on a computationally efficient platform (i.e., 

Python): Most of the existing simulators are built in either 

C++ or MATLAB. For example, ns-3 is a C++ based 

simulator, but it requires a highly C++ specific skill set. 

The need for an extremely experienced and skilled 

workforce hinders the use of ns-3 to some extent despite its 

ability to utilize the high-performance computing power of 

C++. On the other hand, MATLAB-based simulators are 

relatively easier to learn, but open-source MATLAB lacks 

the high-performance computing power to fully utilize the 

available resources. This limitation makes the MATLAB-

based simulators such as Vienna, Simulink, and C-RAN, 

relatively slow. However, Python possesses both the 

advantages of C++ and MATLAB; it is open source and 

utilizes high-performance computing like C++ and it is 



easier to learn like MATLAB. In addition, Python has a 

plethora of AI and DL libraries, which are far richer than 

those of C++ and MATLAB. This capability makes Python 

a better choice for the development of a system level 6G 

simulator as it will enable easier integration and testing of 

AI solutions on emerging networks.  

 

To accelerate the simulation time regardless of the size of 

the network, with high degree of realism and completeness, and 

to generate a large amount of dataset in a short amount of time, 

the approach towards developing future simulators demands an 

overhaul. In this regard, next generation simulators will require 

leveraging innovative simulator architecture, parallel, and 

distributed processing capabilities as well as time and 

computationally efficient modeling of time complex functions 

like mobility and propagation.  Fig. 2 illustrates the proposed 

architecture and techniques to improve the computational 

efficiency of future simulators. The goal of this paper is not to 

list all the possible novel techniques to implement all the 

idiosyncrasies of 6G in a simulator or to address all the 

challenges that may arise therein. Instead, the emphasis of this 

paper is on presenting and addressing only the core challenge 

in building a 6G simulator, i.e., the computational complexity 

problem, which if not addressed can become the bottleneck. 

More specifically, we propose and present a simulator 

architecture that can leverage innovative techniques to address 

the computational complexity in developing system level 

simulators for future cellular networks. Implementation of other 

6G-specific features and use cases will become feasible only if 

this core challenge is addressed first (e.g., by adapting the 

computationally efficient architecture proposed in the paper) at 

the very early stages of 6G simulator design. In summary, this 

framework aims to investigate and develop novel techniques to 

expedite simulation time, which include: 1) a novel architecture 

leveraging the fast and efficient matrix implementation instead 

of for loop-based structure; 2) reducing the number of 

computational and time-hungry calculations of user mobility 

traces, RSRP, RSRQ, and SINR in each TTI; 3) utilizing ML-

based pathloss models with significantly less time complexity 

than ray-tracing based pathloss model;  4) exploring innovative 

ways to model user mobility in a large cellular network;  5) fully 

utilizing the powerful parallel processing capabilities on one 

client without compromising the quality of the data; 6) 

proposing a decentralized simulator architecture to integrate 

multi-client data generation. 

IV. CASE STUDY: EFFICIENT GENERATION OF 

SYNTHETIC NETWORK DATA FOR TRAINING AI 

MODELS 

 

Figure 2: Proposed Python-based simulator architecture to enhance the computational efficiency of future simulators. 



To quantify the advantage of the proposed simulator 

architecture over the state-of-the-art architectures, this paper 

examines the data generation time in three types of simulators: 

(1) a legacy simulator, (2) a simulator with parallel processing, 

and (3) our proposed architecture-based simulator i.e., a 

simulator that leverages binning and pre-generation, paired 

with parallel processing to reduce run time/online 

computational complexity. Specifically, the use case 

demonstrates the increase in the simulation runtime as the 

number of nodes (i.e., connected devices) increases and 

quantifies the potential of the proposed architecture to address 

this issue. As 6G is anticipated to support a greater number of 

connected devices, the case study analyzes the capabilities of 

various simulation techniques/architectures to accommodate a 

high user density in terms of simulation completion time. In 

addition, the use case highlights the effectiveness of the 

proposed solution in generating data for more effective 

machine learning model training. This is accomplished by 

evaluating the performance variation of AI solutions trained on 

data generated using different simulation strategies. 

 

A. Simulation Setup 

 

We exploit a 3GPP-compliant state-of-the-art system-level 

simulator named SyntheticNet [15] to validate our proposed 

simulator architecture. SyntheticNet is a modular, flexible, and 

versatile simulator supporting advanced features like adaptive 

numerology, handover, and futuristic database-aided edge 

computing to name a few. In this article, we have created three 

versions of SyntheticNet. The first version is the legacy 

simulator, which has none of the aforementioned innovative 

approaches implemented in it to improve the computational 

efficiency. In the second version, we equip off-the-shelf 

SyntheticNet with the ability to perform parallel processing 

similar to the current state-of-the-art approach of other 

simulators such as OMNET++, Simone, MATLAB-Simulink, 

and Atoll. In this version of the simulator, we allocate 20 cores 

capable of running the simulation in parallel. Finally, in the 

third simulator version, we implement the proposed innovative 

approaches to reduce computational complexity such as pre-

generation and preloading of COP-dependent KPIs and 

mobility modeling through binning. In addition, this version is 

also capable of performing parallel simulations. 

 

For the first part of the use case, we run the three versions 

of the simulator using similar settings shown in Table 2. To see 

the impact of varying the number of network elements in the 

simulation runtime, we vary the number of users from 100 to 

2000. Each simulator version is run to generate data equivalent 

to 15s of real network data. The generated data is composed of 

several combinations of COPs: A3-Offset, A3-Time to trigger 

(TTT), A2-Threshold, A2-Time to trigger (TTT) with the 

corresponding KPI (Throughput) for each of the combinations. 

In total, each simulator version generated data of around 3,575 

combinations of COP-KPI. Meanwhile, for the second part of 

the use case, each of the simulator versions is run for 1hr with 

100 users. After this period, simulations are stopped, and the 

data generated are gathered to train AI models.  

Table 2. Network simulation settings. 

Parameters Values 

Number of Base 

Stations 

100 

Number of Users 100, 200, 500, 1000, 2000 

Number of COP-KPI 

combinations 

3,575 

COPs A3-Offset, A3-TTT, A2-

Threshold, A2-TTT 

KPI Throughput 

A3-Offset [0, 1, 2, 4, 5, 6, 7, 8, 9, 10] dB 

A3-TTT [64, 128, 256, 512, 640] ms 

A2-Threshold [-95,-97,-99,-101,-103,-105,-107, -

109,-111,-113,-115,-117,-119] dB 

A2-TTT [32, 64, 128, 256, 512] ms 

Simulation Time 

(Data Generation) 

15 s 

 

B. Run-time Comparison and Analysis 

 

The first set of results is the comparison of the total run 

time of the three simulator versions shown in Fig. 3. As 

expected, for all versions of the simulator, the run time 

increases as the number of users increases. More importantly, 

results reveal that as the user density increases, traditional 

simulator requires exponentially higher time to complete the 

simulation. From almost 100 hours for 100 users, the run time 

grows to more than 2166 hours. This means the legacy 

simulator architecture cannot be scaled to simulate 6G 

networks. Meanwhile, a simulator with parallel processing 

demonstrates it can better deal with the higher user density 

compared to the legacy simulator. Since the simulations are run 

in parallel using 20 cores, the simulation time is reduced by 20x 

the original. Although parallel processing showcased the ability 

to cut the runtime, the simulator with proposed innovations 

surpasses its performance. With a maximum of 2000 UEs, it 

takes only 21.7 hours for the simulator to generate the data. In 

summary, the performance of the proposed simulator 

architecture is 5x better than the state-of-the-art parallel 

processing approach and 100x better than most legacy 

simulators that do not allow parallel processing. These results 

demonstrate the potential of the proposed architecture to 

simulate networks with high user density scenarios that are 

hallmark of 6G. 



 

Figure 3. Run-time comparison between simulators with and 

without innovation to improve computational efficiency.  

 

C. AI Model Training Analysis 

 

One of the potential applications of AI in 6G is the 

prediction of network behavior. AI models have the capability 

to model and map out functions that cannot be directly or 

mathematically interpreted in the data. With available data, 

these models give insights into the traffic patterns and network 

behavior. However, to effectively train AI models, a 

representative amount of data is needed. In this use case, we 

analyze the effect of data sparsity caused by the inefficient data 

generation capability of traditional simulators. We build models 

that can map out the relations between mobility-related 

parameters, i.e., A3-Offset, A3-TTT, A2-Threshold, A2-TTT 

against certain KPI, i.e., throughput. The performance of the 

model is measured by the root mean square error (RMSE) 

metric. Lower values of RMSE correspond to a well-trained 

model, while large values indicate insufficient training. We 

train and evaluate several AI models, namely Linear 

Regression, Polynomial Regression, Support Vector 

Regression (SVR), Decision Tree, Random Forest, and 

XGBoost using the data generated by the three simulator 

versions. 

The second set of results shows the effect of the simulators’ 

capacity to generate the required amount of data needed to train 

machine learning models. As legacy simulators are inherently 

slow, they generate the least data points in 1 hour runtime (50 

combinations of COP-KPI data), followed by the simulator with 

only parallel processing (700 data points). Lastly, due to its 

computational efficiency, the proposed simulator generates 

more than 3500 data points in 1 hour. We use the datasets 

generated by the three simulation techniques separately to train 

AI models for throughput prediction and compare the 

performance in Fig. 4. It can be observed that the models trained 

on the data generated by the proposed simulator architecture 

have the lowest RMSE. The average RMSE of the models 

trained with a large amount of data using the proposed 

architecture is 8.87 kbps, better than the 9.38 kbps and 12.90 

kbps average RMSE of legacy and only parallel processing-

capable simulators, respectively. This implies that the proposed 

architecture-based simulator is more capable of enabling the 

training of AI models for existing (i.e., 5G) and emerging 

complex cellular networks such as 6G. This further highlights 

the utility of the proposed architecture for various R&D use 

cases for 6G, particularly for aiding data driven modeling and 

AI-based network optimization.   

 

Figure 4. Comparison of AI models trained with different 

amounts of data generated from the legacy simulator, parallel 
processing-capable simulator, and simulator based on our 

proposed architecture. 

V. CONCLUSION 

In this article, we analyze the computational 

complexity challenge in simulator development for future 6G 

networks and discuss the root cause of this challenge. We 

analyze some of the most computationally expensive tasks in 

running simulations in the current 5G network and map them 

out to anticipate how they will affect the future 6G network. We 

then explicate innovative potential solutions to address this 

issue. These solutions include pre-generation and preloading of 

COP dependent KPIs, modeling mobility innovatively through 

binning, leveraging AI to model computationally intensive 

tasks (i.e., propagation model), enabling parallelization, and 

building on a computationally efficient platform (i.e., Python). 

Utilizing these solutions, we propose a novel Python-based 

simulator architecture to transform the simulator’s 

computational efficiency. We evaluate the efficacy of the 

proposed architecture by presenting a use case. The results 

show not only the superiority of the proposed architecture 

against the state-of-the-art approach not only in terms of higher 

computational efficiency but also as a better enabler for AI-

based model training using synthetic data. 
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