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Abstract—High signal directivity and sensitivity to blockages
make the mmWave base station (BS) discovery a challenging
problem in emerging mobile networks. Existing solutions include
methods that rely on the exhaustive periodic beam sweeping and
thus have high latency and low mmWave cell discovery rate.
Joint methods where macro-BS determines the mmWave cell for
a given user equipment based solely on spatial proximity are
prone to Non Line of Sight (NLoS) conditions. Recent Artificial
Intelligence (AI)-based solutions address the above problems but
rely on impractical assumption of having complete minimization
of drive test (MDT) reports traces at the assisting macro BSs
in all areas of interest. This paper is the first to present an
AI-based framework that can utilize very sparse MDT style
data to enable NLoS-aware low latency mmWave cell discovery,
hereafter referred to as AI-enabled Sparse Data based MmWave
cell discOvery and EN-DC activation framework (AISMO). In
AISMO framework, we first gather historic MDT traces of
mmWave users containing signal strength and Radio Link Failure
(RLF) indicators. We then augment this highly sparse MDT data
using a variety of interpolation, domain knowledge, and AI-
based techniques to create augmented mmWave coverage maps
(mW-Amaps) while incorporating the NLoS conditions through
the RLF traces that are inherently embedded in the data. The
mW-Amaps are then used by the macro BS to determine the
optimal mmWave cell for a given user location. Results show that
our proposed domain knowledge-based MDT data augmentation
approach, which we call Weighted Nearest Neighbor Count
(WNNC), outperforms other data sparsity alleviation techniques
for mW-Amap creation with accuracy of 96%. Second best in
terms of accuracy is a deep learning-based solution, that has
almost a 30x faster training time than the WNNC. To evaluate
AISMO’s performance in a realistic 5G deployment scenario, we
present a case study where AISMO is used to enable E-UTRAN
New-Radio Dual-Connectivity (EN-DC) between macro BS and
mmWave small cells. Results show that compared to the state-of-
the-art nearest mmWave BS approach that leads to 26% EN-DC
activation failure due to NLoS conditions, AISMO practically
offers zero EN-DC failure rate by avoiding unnecessary mmWave
cell searches when the UE is in NLoS condition. Similarly,
when compared with the state-of-the-art AI-based mmWave cell
discovery through sparse data only, AISMO enables 3x more EN-
DC activations leading to proportionally higher use of mmWave
band.

Index Terms—mmWave, Cell Discovery, Artificial Intelligence,
Data Sparsity, Emerging Mobile Networks.

I. INTRODUCTION

Recent studies project that global mobile data traffic will
increase from 50 Exa Bytes per month to almost 230 Exa
Bytes per month in 2026 [1]. This prodigious growth in
mobile traffic gives rise to extreme congestion in the high
frequency bands deployed by the legacy mobile networks.

To cope with this congestion and achieve the sought-after
multi-gigabit-per-second wireless connectivity, 5G is relying
on new frequency spectrum of 30 GHz to 300 GHz, commonly
known as the mmWave spectrum [2]. Recently, sub-6GHz
macro base stations (BSs) and mmwave BSs are deployed in
conjunction. Recently, sub-6GHz macro base stations (BSs)
and mmwave BSs are deployed in conjunction. Macro BS
refer to the traditional sub-6 GHz cells. Compared to mmWave
cells with smaller footprint, macro BS with higher power
cover a larger coverage area. Therefore, sub-6GHz macro BS
serve as the coverage layer and the mmWave BS serve as the
capacity layer. This is a practical solution because macro BSs
are already widely deployed and mmWave BSs alone cannot
provide reliable coverage in vast area unless deployed with
extremely high density.

The wide-band mmWave BSs while dramatically scales up
the system capacity, come with a new challenge with regards to
the cell discovery for the User Equipments (UEs). Unlike sub-
6GHz cells, mmWave band has much higher frequency, and
consequently a higher free space pathloss, higher absorption
and low diffraction. Therefore, users in mmWave band expe-
rience a much higher overall pathloss and signal attenuation
(resulting in beams with Non-Line-of-Sight (NLoS) scenario
not being decoded at the UE terminal) in the mmWave band
as compared to sub-6GHz (HF), where the cells radiate signal
across comparatively bigger area. The high penetration losses,
and directivity in mmWave propagation limit its coverage to
be a few tens of meters around mmWave BS. To compensate
for the higher pathloss in mmWave, more directional antennas
and beamforming has to be used to extend the communication
range of mmWave cells. However, under these circumstances,
UE and BS do not know the directions to transmit (receive)
during the initial access phase, thus causing cell discovery
issue. This cell discovery issue is addressed in this paper.

A. Related Work and Motivation

Given that cell discovery is a well-known bottleneck in
adaptation of mmWave cells at scale, in recent years, re-
searchers have worked on devising suitable strategies to
achieve an efficient cell discovery process in mmWave sys-
tems, that reduce latency and overhead [3]–[17].

Authors in [16] propose a hybrid beamforming scheme
for THz frequency to overcome propagation attenuations and
improve the cell coverage. Similarly, authors in [17] develop
an iterative channel estimation algorithm for mmWave MIMO
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Table I: Comparison of mmWave cell discovery approaches.

Cell Discovery
Method References Short Description Pros Cons

Angle of
Arrival Based
Method

[3], [4] UE location estimation based on angle of
arrival.

Less overhead and com-
plexity required.

UE requires additional sensors for
orientation estimation.

Exhaustive
Search Method [5], [6]

A simple strategy for cell discovery based
on sweeping through all possible antenna
configurations looking for a rendezvous
between BS and UE via brute force.

a. Support for standalone
mmWave cell camping.

b. Equal chances among all
UEs to get network access.

a. Prove ineffective for mobile UEs.
b. Low efficiency due to high

i. BS energy consumption.
ii. UE latency in network access.

Hierarchy/Binary
Search Method [7], [8]

Extension of Exhaustive Search Method
where every iteration successively divides
the target UE search area by configuring
smaller beams.

a. Support for standalone
mmWave cell camping.
b. Larger probability of

UE network access.

a. Too much BS resources spent for
each UE.

b. Not suitable for area with large number
of UEs.

Hybrid Cell
Discovery

[9],
[10]

UE estimated location is found through
exhaustive search, and then hierarchy
method refines the beam alignment.

Lower latency than the
above two methods.

Not suitable for area with large number of
UEs.

Context Based
Cell Search

[11],
[12]

Search is focused towards the crowded ar-
eas known through e.g., call detail record
data.

Achieves higher network
efficiency, and adaptabil-
ity to temporal shifting of
crowded areas.

a. Low Fairness towards the UEs located
in sparsely populated areas.

b. Mobile UEs may not be prioritised
for search.

Joint Search
Method

[13]–
[15]

Macro BS sharing the UE location to
mmWave BS.

Less mmWave BS re-
sources spent on UE dis-
covery, and lowest latency
due to high hit-rate.a

a. Configurational complexity due to
UE dual connectivity towards

macro and mmWave BSs.
b. Susceptible to incorrect UE location

due to GPS error/indoor location.

ahit-rate - Percentage of successful mmWave cell search.

systems. However, the mmWave cell discovery issue is not
studied.

In [3], authors utilize the angle of arrival at the BS for
UE localization. Authors in [4] fuses the angular information
with a map of the environment to provide mmWave BS
location. Studies in [3], [4] can help fine tune the mmWave cell
transmission direction towards the UE location, however, the
initial UE transmission direction towards the mmWave cell,
essential for cell discovery still remains an open challenge.

Authors in [5] exploited exhaustive search method and
proposed an optimal beamwidth design taking into account the
trade-off between mmWave cell search delay and beamforming
gain. Meanwhile, authors in [6] introduced the concept of
beam discovery signal to help identify the beam used during
the exhaustive search method. The comparison of exhaustive
search method and hierarchical search method is presented
in [7]. The authors concluded that hierarchical search can
achieve similar beam alignment performance vis-a-vis exhaus-
tive search with lower overhead. Meanwhile, a hybrid method
combining the strengths of the exhaustive and hierarchical
method is proposed in [9] that outperforms hierarchical search
method in terms of miss-rate (percentage of misdetection),
and exhaustive search in terms of discovery delay. Authors in
[12] discussed the context based cell search approach where
intelligent mmWave BSs steers its beams through a known
populated area for UE discovery. Unlike other approaches,
this scheme increases hit-rate by avoiding beam transmission
towards sparsely populated areas, or towards blockages like
trees, buildings, rivers, etc. However, the study in [12] did not
discuss the mechanism to cope with NLoS conditions.

Another promising cell discovery approach has been pro-
posed in [13]–[15] where joint collaboration between macro

BS and mmWave BS efficiently discovers the UE with the
macro BS feeding the UE location to the mmWave BS.
Authors in [13] propose macro cell to be in charge of the
control plane, and with the increase in demand of data-rate,
instruct the nearby mmWave cell to broadcast synchronization
signal towards the respective UE location. Athul Prasad et al.
[15] analyzed the energy efficiency metric when joint search
based mmWave search method is employed for mmWave cell
search procedure. Their study exhibited 45% savings in terms
of UE power consumption.

While most of the research papers address the mmWave
alignment issue between UE and BS, and the analytical
model for coverage probability [5], [14], none of the proposed
schemes in literature [5]–[17] incorporates NLoS induced
coverage hole in the cell search procedure. This is critical due
to the extremely sensitive nature of mmWave to blockages as
UEs under NLoS condition might render the BS efforts taken
towards mmWave cell search procedure totally useless.

Comparison of the relevant works in Table I shows that
the efficacy of methods such as exhaustive search, hierar-
chy/binary search, and hybrid cell discovery is undermined
by the increase in the number of UEs in the network. These
methods tend to become inefficient as the number of users in
the cell increase. While more efficient compared to the three
aforementioned approaches, context based cell search lacks
the fairness towards the UEs specially the ones located in
sparsely populated areas. Moreover, methods that determine
UE location based on mmWave cell only also incur high
latency and high energy consumption both on the UE and the
BS side. Mobility of the UE will further degrade the accuracy
of UE location identification using such method. Therefore,
unlike the 3GPP-standardized macro base station-based UE
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Figure 1: High level overview of mW-Amap generation using sAISMO framework.

Table II: Table of Acronyms

Acronym Description
LoS Line-of-Sight
NLoS Non-Line-of-Sight
RLF Radio Link Failure

AISMO AI-enabled Sparse data based MmWave cell discOvery
and EN-DC activation framework

MDT Minimization of Drive Test

mW-MDT Historic mmWave MDT data having UE GPS location,
mmWave cell ID, and RLF indication

EN-DC E-UTRAN New Radio – Dual Connectivity
NeN Nearest Neighbor
IDW Inverse Distance Weighted

NNC Nearest Neighbor count: Proposed scheme for
enriching sparse mW-MDT data

WNNC Weighted Nearest Neighbor count: Another proposed
scheme for enriching sparse mW-MDT data

SC Sparsity Scenario
DL Deep Learning
DNN Deep Neural Network

mW-map

mmWave map created by cell association i.e. the area
of interest is divided into bins. Cell ID of mmWave
cell with highest received signal strength is assigned
to that bin, as long as the bin is within distance κ

from mmWave BS, has LoS with it, and has received
signal strength above receiver sensitivity

mW-Smap mmWave coverage map created by the raw
sparse mW-MDT

mW-Amap

mmWave augmented map created by enriching
the raw sparse mW-MDT data through, interpolation,

NNC, WNNC, or AI: proposed solution for
mmWave cell discovery

NN-ENDC
Nearest neighbor based mmWave ENDC activation:

A state-of-the-art method for benchmarking the
proposed solution

Smap-ENDC
mW-Smap based mmWave ENDC activation:

A state-of-the-art method for benchmarking the
proposed solution

Amap-ENDC Augmented mW-map based ENDC activation: proposed
solution for ENDC activation for mobile users

positioning that is already proven to work in practice, real
world application of mmWave cell-based UE positioning still
needs to be determined.

Given these limitations, in this paper, we propose a NLoS
aware cell discovery scheme that builds on the joint search
method for cell discovery approach, hereafter referred to as AI-
enabled Sparse data based MmWave cell discOvery and EN-
DC activation framework (AISMO). In joint search method,
macro BS shares the UE location with mmWave BS using high
speed Xn interface standardized by 3GPP. By doing so, joint
search method reduces the resources spent by the mmWave
BS on UE discovery and at the same time offers a high hit-
rate which ultimately minimizes the overall latency. As Xn

interface is usually optical fiber based or have higher capacity,
the effect of small amount of additional signaling needed for
AISMO is expected to be negligible. Fig. 1 shows the high
level overview of the AISMO framework used to generate
mmWave map having optimal mmWave cell id. Each module
in the Fig. 1 has been briefly described below:

1) Log the MDT reports from mmWave cells. MDT data,
already standardized by 3GPP, can be retrieved directly
from the network [18], [19]. The UE can be set with
MDT report logging that includes GPS location, serving
signal ID, serving signal strength, and RLF instances.

2) Process the collected data from item #1 to create cell
ID based mmWave cell association maps, here after
referred to as mW-maps. mW-map is generated using
the cell ID of mmWave cell with highest received signal
strength observed in that bin, as long as the bin is
within the maximum allowable distance from mmWave
BS, has LoS based signal reception, and has received
signal strength above receiver sensitivity. mW-map also
contain Radio Link Failures (RLFs) and coverage hole
information.

3) Due to sparsity in the MDT data, the generated mW-
maps are also expected to be sparse (mW-Smaps).
Apply interpolation, domain knowledge, or Artificial
Intelligence (AI) based enrichment techniques to address
the MDT data sparsity and complete the mW-Smaps
transforming them into augmented mW-maps, hereafter
referred to as mW-Amaps.

4) Use the generated mW-Amaps to identify the optimal
mmWave cell (nearest cell with clear LoS). Using mW-
Amaps, AISMO prevents cell association attempt for
UEs under incomplete LoS (or NLoS), thereby prevent-
ing unnecessary mmWave cell discovery searches.

The terminology and acronyms used in this paper are
defined in Table II.

B. Contribution

The main contributions of this paper can be summarized as
follows:

• To the best of the authors’ knowledge, this is the first
paper to present a joint search based mmWave NLoS
aware cell discovery framework built using realistic
sparse mmWave MDT data consisting of RLFs, coverage
holes, and serving mmWave cell identifiers.
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• We propose and evaluate several data sparsity coping
techniques to predict the optimal mmWave cell in loca-
tions from where no prior MDT data are reported. Thus,
this is first joint mmWave cell discovery scheme that
works with realistically sparse MDT data where only 5-
30% of the bins have prior mmWave cell user history.

• A key output of the proposed AISMO framework is
the mW-Amaps that contain the cell ID of the optimal
mmWave cells for each bin. The mW-Amaps then assist
the macro BS to identify optimal mmWave cell for a
given UE location.

• We demonstrate through a realistic case study how
AISMO can facilitate intelligent activation of E-UTRAN
New-Radio Dual Connectivity (EN-DC) [20]. We com-
pare the EN-DC activation rate enabled by AISMO to two
state-of-the-art EN-DC activation schemes; a) mmWave
cell discovery based on nearest mmWave cell, and b)
mmWave cell discovery based on the sparse mmWave
MDT data (without data augmentation as leveraged in
AISMO).

The rest of the paper is organized as follows. In section
II we discuss the data collection of MDT style traces from a
realistic mmWave cell deployment scenario. In Section III, we
present the state-of-the-art and propose different approaches
to augment the sparse mmWave MDT data. Using augmented
data, we create mW-Amaps that in turn enable identification
of the best mmWave to serve a UE in a given location.
We also investigate the tradeoff between the accuracy and
computational cost of the most promising mmWave MDT data
augmentation techniques. In Section IV we present a case
study to evaluate the potential of AISMO for EN-DC activation
for 5G mmWave network and benchmark its performance
with two state-of-the-art techniques. We conclude the paper
in Section V.

II. DATA COLLECTION FROM A REALISTIC MMWAVE
ENVIRONMENT

In this study we use synthetic data because of the challenges
associated with real data collection and analytical modeling as
explained in following subsections.

A. Challenges in mmWave Data Collection from Real Network

Collecting mmWave MDT data from a live network though
possible in theory, is impractical because of several reasons.
First, mmWave networks are not widely deployed in most loca-
tion. Even for select deployment areas like Los Angeles, Cal-
ifornia where some network operators have already deployed
mmWave network, data acquisition are difficult and does not
constitute a viable campaign as the number of mmWave
enabled UEs are scarce. Additionally, existing techniques of
mmWave cell discovery are based on exhaustive search and
the associated inefficiency in cell discovery contributes to
low UEs camping on mmWave cell. This further adds to the
difficulty of collecting enough data samples to be deemed
useful. Subscriber data confidentiality further hinders data
collection from the existing mmWave UEs. Although other
means of data collection such as drive test exist, performing
this in a congested place like Los Angeles is expensive both

in terms of time and resources. Besides, drive test based data
collection when compared to MDT style data collection, can
provide only traces from paved locations which represent even
smaller fraction of the total area of interest.

B. Challenges in Analytical Modeling

For a complex heterogeneous cellular system with realistic
mobility, it is extremely challenging to develop a compre-
hensive and tractable analytical model. Mobility details like
handover process combined with intricate inter-dependencies
between dynamic heterogeneous network parameters, nonlin-
ear relationships, and various factors such as blockages, ter-
rain, user behavior, interference, and complex antenna patterns
further complicate the analytical modeling process. The closest
analytical modelling approach for the system considered in
this work are the stochastic geometry-based works in [8], [9],
[21]–[26] and the works in [27]–[30]. However, these works
do not cover realistic user mobility (based on for example
historical mobility patterns), 3GPP based intra-frequency han-
dover, inter-frequency handover evaluation criteria, flexibility
to configure each base station (transmission power, height, tilt,
etc.), dual connectivity (carrier aggregation, EN-DC, NR-NR
dual connectivity), and blockage modeling (pre-determined
locations and dimensions of blockage, etc.). A tractable analyt-
ical model will only be possible if the system is assumed to be
a static system, devoid of realistic mobility and by employing
numerous simplifications to model its intricate complexities.
Relying solely on such an assumption based analytical model
would lead to inaccurate predictions and sub-optimal solutions.

C. Synthetic Data Collection through SyntheticNET Upgrade

In the backdrop of the aforementioned challenges, and
motivated by successful use of synthetic data for training AI
in many fields [31]–[34], in this paper we resort to synthetic
data. All the RLF samples used for the simulation are obtained
artificially from the simulator. For that, we exploit a 3GPP-
compliant state-of-the-art system level simulator named Syn-
theticNET [35]. SyntheticNET simulator has been calibrated
against real network measurements to ensure the validity of the
data generated through it. Moreover, SyntheticNET simulator
triggers RLF as per 3GPP criteria [20], i.e., when a) UE
goes out of sync, b) maximum number of RACH attempts
have been reached, or c) when retransmission attempts reach
the configured threshold. However, although SyntheticNET, in
its current form, supports features related to cell discovery
such as 3GPP-based initial cell selection [36], it is tailored
more to mimic a network operating on lower frequency bands
(i.e., maximum 3.5GHz). To address this issue, we incorporate
several upgrades to make SyntheticNET more suitable for
mmWave simulation environment.

To model the macroscopic propagation effects in a mmWave
simulation environment, first, we utilize a real antenna pattern
from a mmWave antenna available commercially [37]. The use
of a realistic antenna pattern helps in a more accurate mmWave
based coverage modeling. Moreover, instead of using two
separate pathloss models for LoS and NLoS scenarios respec-
tively, we utilize a single pathloss model for LoS scenario.
For NLoS situations, we model the attenuation caused by
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Table III: Description of Simulation Parameters

Parameter Description Value
Simulation area 25 km2

Number of macro BSs 3
Macro cell frequency 2.1 GHz
Number of mmWave BSs 5
mmWave cell frequency 28 GHz
mmWave cell height 10 m
mmWave Transmission Power 20 dBm
Pathloss Exponent 5
Shadowing Standard Deviation 8
Number of UEs per km2 per Sparsity

Scenario (SC)
SC1: 30, SC2: 60, SC3: 120,

SC4: 240, SC5: 190
% of Mobile UEs 70%
Mobile UE velocity 60 km/h
Cell range (κ) 1500m
Total Simulation Time 15000 ms

blockage by incorporating actual obstructions in the simulator.
This approach is more realistic and practical as the location,
dimensions, and even signal degradation respective to each
unique obstruction can be accurately configured compared to
empirical or analytical pathloss models.

The downlink signal strength Rsu from the serving mmWave
cell s to user u is given by:

Rsu = P st GuG
s
uδ
s
uα(r

s
u)

−β (1)

where P st is the transmit power of serving mmWave cell
s, Gu is the gain of user equipment, Gsu is the transmitter
antenna gain of the mmWave cell s towards user u, δsu is the
shadowing observed from the mmWave cell s at the location
of user u, α is the pathloss constant, β is the pathloss exponent
and rsu represent the distance of user u from cell s. The values
of α, β, and δ are based from the study conducted in [38].

D. Simulation Setup and Modeling Sparsity
We use an area of size 5km × 5km for the simulation

as shown in Fig. 2(a). The 25km2 simulation area is fur-
ther divided into one million 5m × 5m bins. We deploy
a heterogeneous network with three macro BSs radiating at
2.1GHz frequency, and five omni-directional mmWave BSs
operating at 28GHz band. Fig. 2(a) also shows the system
model diagram of the deployed location of the macro and
mmWave cells. Moreover, several obstructions are put in place
to realistically model the NLoS scenario. The rest of the
system-level simulation parameters are summarized in Table
III.

The key idea of the proposed AISMO framework is to
leverage historical mmWave MDT data to build coverage maps
that can be exploited by macro BS to identify the optimal
mmWave cell for a user in a given location. However, given
the non-uniform nature of user distribution, a large fraction
of the area of interest is expected to have no historical MDT
data. Particularly, emerging mobile networks operating on the
mmWave bands will initially observe low utilization due to the
low number of readily available devices supporting mmWave.
As a result, the overall MDT data from a mmWave network
is anticipated to be even more sparse.

To model this inherent sparsity in the MDT data, we
utilize SyntheticNET and present five sparsity scenarios (SC),

each with different user densities. SC1, SC2, SC3, and SC4
represent scenarios wherein 5%, 10%, 20%, and 30% (cor-
responding to the initial user deployments ranging from 30,
60, 120, and 240 per km2 with 1500 samples per user for
each SC respectively) of the total one million 5m × 5m bins
have available data, respectively, and the remaining bins have
no data. These SCs are generated by varying the number
of users distributed in the network. The number of UEs per
SC is summarized in in Table III. While the aforementioned
SCs have uniformly distributed UEs, an additional SC, SC5,
represents a more realistic non-uniform distribution of UEs.
70% of the UEs in all the five sparsity scenarios are configured
to be mobile following random waypoint mobility model. The
fifth SC with non-uniform user distribution represents areas
with different user densities as typically, during peak hours,
hotspot areas have much higher traffic than neighboring areas.

In all SCs, UEs were deployed according to uniform random
distribution, where each UE had an equal probability of going
into any bin. At the end of the simulation, 15,000 unique data
snapshots were collected from test users. It should be noted
that UEs may end up in the same bin during simulation, but
because the nearest cell with line-of-sight is used for mmWave
cell association, the cell-identifier data in each bin will always
be identical.

During the simulation, UEs are configured to camp initially
on 2.1GHz macro cells, that provide coverage to UEs within
the target area. We assume the macro cells to have accurate
UE location information to share with the mmWave cells,
thus conforming to the joint search method. Moreover, we
assume the exact UE location known to the mmWave cells
enables them to achieve perfect beam alignment with the
UE. This conforms with the mmWave environment where
mmWave cells with beamforming will have pencil-like beams
and mmWave UE will have better signal reception than in
the case of macro cells. UEs served by the macro cell then
attempt mmWave cell camping to the nearest mmWave BS. If
the UE fails the mmWave cell camping, it attempts to camp on
the second nearest mmWave BS. This process continues until
the UE successfully camps to a mmWave cell, fails to find a
suitable mmWave cell (for the configured number of attempts),
or the distance between the UE and mmWave BS exceeds
the cell range denoted by κ. The parameter κ is a common
parameter used in the existing mobile networks that prevents
far away UEs to camp on an overshooting cell. As a result,
UEs can be ensured to have good signal strength and reduced
uplink interference from distant UEs. In our simulation, we
use a κ value of 1500m to limit the mmWave band small
cells’ coverage from far away UEs. Note that the beamforming
technique can helps mmWave cells to transmit high SINR
signal to even UEs located in cell edge.

We record the RLFs of the mobile UEs camped on the
mmWave cell as they travel through the designated network
area. The RLFs happen due to the drastic signal deterioration
from the NLoS reception induced by the blockage between
the UE and mmWave BS. Similarly, out of coverage scenario
will be observed due to UE getting farther from the serving
mmWave BS by a distance greater than κ. Furthermore, the
failed mmWave cell camping attempts due to the absence of an
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Figure 2: (a) System model with macro cell, mmWave cell and blockage locations. mW-map for (b) SC1 - 5% uniform sparse data, (c) SC2
- 10% uniform sparse data, (d) SC3 - uniform sparse 20% data, (e) SC4 - uniform sparse 30% data, (f) SC5 - non-uniform sparse data, and
(g) Ground truth.

optimal mmWave cell for the static and mobile UEs are also
recorded. Both the RLF and failed cell camping are marked
as coverage holes in this work. Fig. 2(b-f) illustrates the
different sparsity levels in SC1 to SC5, the resultant coverage
hole and suitable mmWave cell ID map obtained from the
simulation results. Fig. 2(b-f) also represent the mmWave cell
ID simulated where UEs camped on and identify coverage
holes in red color. Finally, we increase the number of UEs
to 2000 and uniformly disperse the UEs before running the
simulation. The data gathered through this setup are not sparse
and serves as the ground truth (Fig. 2(g)) to verify our results
presented in the next section.

Location and size of obstacles is crucial in determining
the LoS or NLoS conditions, However, we omit this explicit
information as an input to the AI model as this information
would require a comprehensive and continual survey of the
area. Such a survey is a costly, time-consuming, and resource-
intensive task given the number of mmWave cells that are
expected to be deployed in the near future. To address this
issue, our AI model is trained using actual cell identifier (PCI)
and RLF data already present in MDT data. The AI model
implicitly learns the impact obstacles from the occurrence of
RLF. This smart mechanism to learn the impact of obstacles
from MDT data indirectly, without requiring direct survey-
based knowledge of location and height of obstacles is one
of the core contributions of the paper. Based on this learning,
model does not make any optimal mmWave cell prediction for
the obstructed areas. Additionally, by periodically retraining
the AI model with new MDT data, any changes in the size or
location of the obstacles can be accounted for in the new AI
model.

III. IDENTIFYING OPTIMAL MMWAVE CELL

In this section, we discuss our proposed solution to identify
the optimal mmWave cell for each UE. However, a major
challenge in this identification is data sparsity. Addressing
data sparsity is essential to predict the optimal mmWave cell
specially in areas where no prior information of mmWave cell
camping due to no UE information is available. Using the joint
search method, a macro cell serving a mmWave compatible
UE can share the UE location to the known optimal mmWave
cell for efficient and effective mmWave cell camping. The
data sparsity mitigation techniques we investigate, evaluate
and compare for optimal mmWave cell identification include
interpolation techniques, domain knowledge-based custom al-
gorithms, and artificial intelligence (AI)-based algorithms.

In the initial phase, we can achieve cell discovery using
any of the state-of-the-art approach mentioned in Table I.
The sparse data obtained through the state-of-the-art cell
discovery approach can be then augmented by the sparsity
alleviation technique discussed and analyzed in this paper to
create mW-Amap. Later on, we can periodically update the
mW-Amap using the MDT obtained on the network operated
by AISMO. This continual update is important to cater for
any environmental or structural change in the mmWave cell
coverage area.

A. Leveraging Interpolation Techniques for Optimal mmWave
Cell Identification

Recent studies have shown the potential of different spatial
interpolation techniques to address the MDT data sparsity
challenge in cellular networks [31]. In this paper, we leverage
interpolation techniques that have been shown to work well
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in [31] including moving average, inverse distance weighted,
and nearest neighbor. A brief description of each technique is
given below:

• Nearest Neighbor - The NeN method, also known as
proximal interpolation or point sampling, estimates the
unknown bin value by calculating the Euclidean distances
between that bin and the locations of the known bin
measurements and then selecting the measurement with
the minimum Euclidean distance. Although the nearest
neighbor approach has low complexity, it can result in
sharp transitions between adjacent bin values and can also
increase noise, especially at the boundary of different cell
zones [39].

• Inverse Distance Weighted (IDW) - Assuming that the
data are strongly correlated in space, the classical IDW
method estimates the value of the unlabeled bins by cal-
culating a weighted arithmetic average of the neighboring
known bin values. Each known value is weighted with a
weight that is equal to the inverse of the distance between
the location of the missing value and the location of the
known value raised to a power, p. An advantage of IDW
method is the ease of implementation since it is intuitive.
This interpolation works best with evenly distributed data
points. However, in the case of non-uniform distribution
of measurements or unevenly distributed data clusters,
it is sensitive to measurement outliers and introduces
significant errors. It also becomes less accurate in case
of discrete data as the weighted arithmetic average in
that case needs to be rounded off to a discrete value.
Moreover, its computational complexity increases as the
number of observed spatial points increases, leading to
inefficiency of this method when the number of data
points are large.

• Moving Average - The value of the unlabeled bin in
this case equals the arithmetic average of the known
neighboring bin data. Mathematically, for moving average
method is same as IDW with power p = 0.

These interpolation techniques work best specially in cases
where the available sparse data are somewhat representative of
the whole data or exhibits some degree of spatial correlation
[31]. However, in situations where the available data are sparse
or non-representative, these methods are likely to perform
poorly. Therefore, for those scenarios, alternative methods
must be investigated for the problem of interest.

B. Domain Knowledge Based Custom Algorithms for Optimal
mmWave Cell Identification

To overcome the aforementioned shortcomings of
interpolation-based methods to cope with mmWave MDT
data sparsity, in this subsection we present two domain
knowledge-based algorithms to address the data sparsity. A
range of sparsity addressing techniques have been proposed
and analyzed in our earlier work [40]–[42] for completing
coverage maps [31]. To the best of the authors’ knowledge,
this is the first study to analyze a domain knowledge-based
sparsity alleviation method in the form of NNC and WNNC
for enhancing mW-map. However, NNC is not a novel idea
as it is similar to commonly used imputation using a) mean

Algorithm 1: Weighted Nearest Neighbors Count
(WNNC)
Initialize K, GPSaccuracy, BINsize, and Label ;
// Label: vector of mmW PCIs with 0

representing coverage hole

for Every bin b do
if b is unlabeled then

Initialize Cweight ; // Cweight: vector

representing cumulative weight against

each entry of Label vector

for tier k = 1 to K do
fetch binsk from tier k compute weight wk

for index i = 1 to size(Label) do
CUMweight[i] += wk ×

count(Label[i] in binsk)
end

end
if max(CUMweight) > 0 then

label b with PCI having maximum
CUMweight

else
Do Nothing; // Not enough data.

Surrounding bins are empty

end
else

Do nothing;
end

end

and b) mode sparsity alleviation techniques. On their other
hand WNNC uses weighted nearest neighbor information.
Thus, WNNC is an advanced form of K-Nearest Neighbor
(KNN), where it uses domain knowledge aware (tier control
and GPS accuracy per area) weighting metric to the spatial
data for supplementing the sparse data.

• Nearest Neighbor Count (NNC): NNC fills up the un-
labeled bin using the values of the labeled bin with the
maximum number of occurrences in the surrounding tiers
represented as K. Unlike legacy interpolation method,
this domain aware method does not introduce rounding
off error. NNC, when used with large number of tiers
(K), tends to complete more empty bins. This property is
particularly useful for areas with ultra-sparse populations.
However, using large values of K might not be favorable
under the mmWave environment. High LoS dependency
of mmWave frequencies may tend to mislabel the empty
bins where the UEs cannot be serviced by the mislabeled
cell due to some narrow blockages. This limitation can
aggravate further when using large bin sizes.

• Weighted Nearest Neighbor Count (WNNC): WNNC ad-
dresses the aforementioned drawback of NNC by apply-
ing a unique weight w to each tier around the unlabeled
bin. The weight w decreases gradually as we move away
from the unlabeled data to the outer tier. The weight
wk assigned to a tier k ∈ [1,K] can be represented
mathematically as:
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Table IV: Deep learning hyper-parameters for optimal mmWave cell
identifier model.

Hyper-parameter Name Search Range/Value
DNN Depth d {1,2,3,4,5,6}
DNN Width w {5,8,10,12,16}
Activation Function (Hidden Layers) Relu
Activation Function (Output Layers) Sigmoid
Optimizer Adam (Gradient Descent)
Loss Metric Binary Cross Entropy

Figure 3: Structure of the deep learning based model for predicting
optimal mmWave cell for a given UE location.

wk =
ψ

k × ω
(2)

where ψ represents GPS accuracy in meters and the bin
size is denoted by ω (also in metres). Details about the
operation of WNNC is shown in algorithm 1. While in
the simulation setup (Fig. 2) we assume that the macro
BS does not contribute to the UE positioning error i.e.
GPS, the GPS positioning error has been incorporated
as a component in the weight metric to allow for the
GPS based positioning error [43]. To compensate for the
importance of LoS in mmWave transmission in places
with high GPS accuracy, more weight is given to the
nearest bins (lowest tier). In contrast, bins further away
(higher tier) receive less weight because they contribute
less to filling empty bins.

C. Artificial Intelligence Assisted Optimal mmWave Cell Iden-
tification

Wireless cellular networks are highly dynamic systems
where traffic intensity, and user mobility patterns are continu-
ously changing after few intervals. We therefore created sev-
eral machine learning models to compare the training time and
accuracy with the methods discussed in earlier subsections. In
this subsection we describe machine learning algorithms that
we leverage to alleviate sparsity issue and construct a mW-
map representing the optimal mmWave cells for the UEs. The
available sparse data are scaled and used to train and test
several AI techniques for creating a best-performing model
for determining optimal mmWave cell as a function of UE
location. We begin by splitting the sparse data into a training

Table V: Time to build mW-Amap.

Use Labeled Unlabeled Time to Build mW-Amap.

Case Bins Bins Nearest
Neighbor

WNNC
(K=10) DL

SC1 50,000 950,000 6.4sec 21.2Hrs 12mins
SC2 100,000 900,000 6.9sec 20.9Hrs 45mins
SC3 200,000 800,000 7.7sec 19.4Hrs 43mins
SC4 300,000 700,000 8.7sec 18.7Hrs 48mins
SC5 187,176 812,824 7.4sec 19.5Hrs 57mins

and a test dataset. We investigate the performance of state-of-
the-art AI algorithms for filling in the missing values in the
sparse data based mmWave maps. These include Naı̈ve Bayes,
KNN, decision trees, SVM, and deep learning based models.
We optimize the performance of each these algorithms through
intensive hyper parameter tuning.

Deep neural network-based model are particularly prone to
over fitting or under fitting given the large degrees of freedom.
To avoid under-fitting or over-fitting, we investigate a variety
of DNN architectures with a range of hyper-parameters as
shown in Table IV. Our investigation shows that a DNN model
with fully connected three hidden layers having 16, 16, and 8
neurons respectively, (shown in Fig. 3) yields the best results.
This DNN model is trained using an epoch size of 200 and a
batch size of 10.

D. Performance Comparison Between the Different Tech-
niques for Optimal mmWave Cell Identification

We evaluate the potential of the aforementioned approaches
to identify the optimal mmWave cell using accuracy as the
performance metric. Among the interpolation techniques, NeN
outperforms the other two techniques, (i.e., IDW and moving
average) with accuracy of more than 90% for all the SCs
as shown in Fig. 4(a). However, even the best interpola-
tion technique falls short compared to the proposed domain
knowledge-based custom algorithms NNC and WNNC. Fig.
4(b) illustrates the accuracy for all five sparsity scenarios
obtained with K of 5, 10, and 20 for both NNC and WNNC.
Results show that lower K may fail to predict 100% of the
target area as evident with the lack of data when K = 5 in more
sparse data (i.e., SC1 and SC2). On the contrary, higher K will
incorporate more neighboring bins to predict the missing bin
at the cost of lower accuracy. K of 10 yields the best accuracy
in predicting optimal mmWave cell. Comparison of NNC and
WNNC performances reveal WNNC yields better results than
NNC with the inclusion of domain knowledge assisted weight
metric that gives more weightage to lower-tier neighboring
bins. Accuracy of as high as 96% can be achieved when using
WNNC.

While WNNC shows promising results in identifying the
optimal mmWave cell under sparse conditions, it is computa-
tionally expensive as shown in Table V. It takes more than 18
hours to generate a complete mW-map using WNNC for any
sparsity scenario. However, the processing time can be reduced
by using using commercial grade high performance servers
having parallel computing support. Meanwhile although inter-
polation based method NeN can generate the complete map
in just seconds, it yields accuracy much lower than WNNC.
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Figure 4: Optimal mmWave cell identification for Sparsity Scenario 1-5 using (a) Traditional Interpolation techniques, (b) Custom Algorithms,
(c) Machine Learning.

These limitations of the interpolation-based and custom
algorithm-based techniques can be addressed by leveraging
AI-based solutions. Fig. 4(c) shows the accuracy of predicting
the optimal mmWave cell for various machine learning models
trained on the same dataset. Results illustrates the accuracy of
optimal cell prediction increase with the increase in available
samples (SC1 to SC4). Moreover, results also shows that the
DL model gives the best result with an accuracy of almost
95%. Although the accuracy of the DL model is slightly lower
compared to the proposed best performing WNNC (96%), the
DL model only takes 45 minutes to build mW-Amap as shown
in Table V. DL-based models are effective especially for the
scenarios where signal reception at different times of the day
varies due to different UE mobility and traffic dynamics. As a
result, the optimal mmWave cell maps need to be continuously
tuned with the dynamically changing conditions mentioned
above.

Finally, we provide a visualization of the decision boundary
plot for approach that yields the best results in each of the three
set of techniques discussed as shown in Fig. 5. This figure
validates the higher accuracy generated by the WNNC and
DL as manifested by the more prominent boundaries among
the mmWave cells compared to interpolation based nearest
neighbor technique.

IV. CASE STUDY - EN-DC ACTIVATION FOR MMWAVE
BAND

A. Background of EN-DC Activation Problem

The proposed joint search-based mmWave cell discovery
solution is well suited for EN-DC activation. As per 3GPP
Release 15 specification 37.863 [44], EN-DC allows 5G capa-
ble UEs to simultaneously connect to a 4G and 5G BSs. EN-
DC activation requires UE to first establish a user-plane and
control-plane to a 4G mobile network. Later on, UE searches
for an optimal 5G BS and establishes a user plane upon
successful discovery of a nearby 5G BS. This non-standalone
5G network deployment helps the mobile operators to reduce
the capital expenditure (CAPEX) and thereby accelerating the

penetration of 5G networks in developing countries. More
details on EN-DC can be found in [20].

The huge resource requirements of bandwidth-hungry ap-
plications while keeping in view the over-congested high-
frequency bands can be addressed by activating EN-DC using
mmWave band of 5G cells. However, EN-DC activation re-
mains as an open problem that requires intelligent solution,
particularly in mmWave network. This is because, if user
is prompted to attach to sub optimal mmWave cell, it can
lead to poorer performance and increased signaling overhead
compared to 4G only connectivity, and without reaping much
benefits for the user or the network.

The solution to activate EN-DC has to take into account
the risk of RLF as analyzed in [20] for 5G/4G network
operating on sub-6 GHz frequencies. In [20] the proposed
scheme relies on past RLF data on 5G cells to minimize the
aforementioned risks. The EN-DC activation problem becomes
even more complex if the 5G cell is on mmWave band due to
the challenges stemming from mmWave coverage reliability,
mmWave cell discovery, and need for the cell beam alignment
to the exact UE position. All these conditions must be met for
the EN-DC to become successful in mmWave 5G network.

B. Proposed Framework of EN-DC Activation for mmWave
Cells

We propose an EN-DC activation solution that leverages
the mW-maps constructed through the sparse mmWave MDT
data using the approaches presented in the last section. The
historical data from UE traces collected from both the 5G
standalone, and EN-DC activated UEs contains the serving
mmWave cell information against the UE location. The UE
traces also contains the RLF data observed due to either
NLoS induced signal deterioration or due to a high pathloss
situation (where UE and BS distance exceeds cell range κ).
The approaches mentioned in Section III can be applied to
this mmWave MDT data collected from the network to create
the mW-maps and then identify the optimal 5G mmWave cell
for a UE based on its reported location. This can help not
only in 5G mmWave cell discovery but assist in mmWave cell
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Figure 5: Optimal mmWave cell map predicted using Nearest Neighbor, WNNC (K=10), and DL.

Figure 6: EN-DC activation to optimal mmWave cell using mW-
Amap generated by AISMO framework.

beam alignment required to maintain reliable communication
for mobile UEs. Fig. 6, presents the schematic of the proposed
EN-DC activation scheme. The fact that the proposed scheme
is centralized, and the optimal mmWave cell is chosen from
the centrally constructed mW-maps, as the one that has the
best past performance in terms of received signal strength and
low RLF risk makes this scheme superior compared to the
state-of-the-art nearest mmWave cell selection.

C. Performance Analysis of the proposed Amap-EN-DC acti-
vation solution for mmWave cells

To evaluate the potential of the proposed EN-DC activation
scheme, we run a simulation for 300 EN-DC capable UEs,
70% of which move with a constant speed of 60km/h using
random waypoint model. The system model used is the same
as shown earlier in Fig. 2(a), where 4G macro BSs act as
the coverage layer and 5G mmWave cells take the role of
the capacity layer to address the needs of bandwidth-hungry
applications by activation of EN-DC where applicable. We
assume that the UEs already camped on 4G macro cell.
When a 5G service is desired, UE requests EN-DC activation.
Followed by this request, macro cell initiates mmWave cell
discovery using joint search method where the UE’s location
is shared by the 4G macro cell to the respective optimal
5G mmWave cell. Our proposed method to determine the
optimal mmWave cell for EN-DC activation i.e., Amap-ENDC
is described in the last subsection and further illustrated in
Fig. 6. We benchmark the performance of the proposed Amap-
ENDC against following two state-of-the-art EN-DC activation
approaches:

• Connecting to the nearest mmWave BS (NN-ENDC)
- in this simple approach, 4G macro cell directs the
5G mmWave cell located nearest to the candidate UE
to establish the EN-DC connection, without taking into
consideration the location of the blockages or quality
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Figure 7: Comparison of EN-DC activation KPIs for 5G mmWave cells.

of coverage observed from past connections with UE
from the same location. This approach while being very
simple to implement, is prone to failed ENDC attempts
as revealed in results section.

• mmWave cell association to best cell from mW-map
generated from the sparse mmWave MDT data (Smap-
ENDC). In this approach, historical data obtained at
the UE location are leveraged to create mW-maps and
to identify the optimal mmWave cell. mmWave cell
discovery for EN-DC activation terminates if the UE is
located in a bin in the mW-map where prior UE traces
are not available. Given the sparsity of real MDT data
for mmWave cells, this scenario where Smap-ENDC is
unable to suggest an optimal mmWave cell is expected
to happen quite often leading to lower EN-DC activation
rate.

Results in Fig. 7 shows that although NN-ENDC approach
triggers a large number of EN-DC attempts (21194), successful
EN-DC activations are much less due to around 4367 EN-DC
failures. The large number of EN-DC failures is brought by the
4G macro cells being unaware of the blocking locations and
the absence of NLoS aware mW-map. Note that EN-DC failure
here refers to the UE with failed mmWave cell discovery or
due to UE camping to the sub-optimal mmWave cell. On the
other hand, the second approach i.e., Smap-ENDC, achieves
zero EN-DC failures, but with a very few numbers of EN-
DC attempts. This is due to the small fraction of bins in the
raw sparse data based mW-maps being labeled. A sparsity of
30% that is realistic representation of user distributions in a
typical city is considered in this case (similar as SC4). Fig. 7
shows that 18090 bins are unlabeled and for the UE in any of
the unlabeled bins in the mW-map, the macro cell does not
proceed with mmWave cell discovery due to the absence of
information about the optimal mmWave cell for UEs in those
particular bins.

Finally, the best EN-DC KPIs are obtained using the pro-
posed Amap-ENDC scheme. We use DL-assisted augmenta-
tion of the MDT data to create the complete mmW-maps from

the raw mmWave MDT data as explained in Section III, due
to affordable computational complexity and yet second best
accuracy. Fig. 7 shows that compared to the other two ENDC
activation approaches discussed above, the maximum number
of EN-DC activations are observed when attempting mmWave
cell discovery using our proposed approach. This is due to
the interpolation of the sparse data which allows macro BS
to effectively predict the optimal mmWave cell against the
UE location. Moreover, macro BS avoid unnecessary mmWave
cell search attempts due to the knowledge of the UE being in
the coverage hole. The NN-ENDC approach which attempts
cell discovery for the nearest mmWave BS has only the
knowledge of the number of UEs farther from the mmWave BS
than κ. On the contrary, the proposed Amap-ENDC scheme
knowing the number of UEs out of the configured cell radius
κ, along with the NLoS aware mW-map results in an efficient
EN-DC activation with just ∼5% EN-DC failures (991 failures
out of 18557 EN-DC attempts).

V. CONCLUSION

The mmWave cell discovery procedure is an arduous task,
due to the highly directional nature of mmWave transmis-
sion which is crucial to compensate the severe propagation
losses. The joint search method is the most promising cell
discovery approach where the high-frequency macro cell aids
the mmWave cell discovery by sharing the UE location to
the nearby mmWave cell. However, the knowledge of the
optimal mmWave cell is crucial to the success of mmWave
cell discovery. This is due to the peculiar nature of mmWave
cells where signal level deteriorates dramatically when UE
goes under NLoS scenario. To address this issue, we propose
the AISMO framework, where MDT data can be leveraged
to build an mW-map. Since sparsity is typically intrinsic in
the mobile network data, we employ data sparsity alleviation
techniques to build a comprehensive UE-BS distance aware
as well as NLoS aware optimal mmWave cell map called
mW-Amap. Results from a mmWave-enabled 3GPP-compliant
simulator SyntheticNET show that optimal mmWave cell can
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be predicted with accuracy of 96% using a domain knowledge-
based custom WNNC algorithm. Since UE mobility and traffic
dynamics may affect signal reception in different times of
the day, we demonstrate how deep learning can be used to
build the mW-Amap with 30x lesser time interval than WNNC
algorithm, and with the accuracy of 95%. We also present a
case study where the proposed AISMO framework is utilized
to efficiently enforce EN-DC transmissions between the EN-
DC capable UEs and the participating 4G macro cells and 5G
mmWave cells. Simulation results show that for a known UE
location, mW-Amap obtained from AISMO framework can
help achieve 95% EN-DC activations to ideal mmWave cell.
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