
Deep Learning based Detection of Sleeping Cells in
Next Generation Cellular Networks

Usama Masood∗, Ahmad Asghar†, Ali Imran† and Adnan Noor Mian‡
∗Department of Electrical Engineering, Riphah International University, Lahore, Pakistan
†School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, USA
‡Department of Computer Science, Information Technology University, Lahore, Pakistan

Email: usama.masood@riphah.edu.pk, {ahmad.asghar, ali.imran}@ou.edu, adnan.noor@itu.edu.pk

Abstract—The growing subscriber Quality of Experience de-
mands are posing significant challenges to the mobile cellular
network operators. One such challenge is the autonomic detection
of sleeping cells in cellular networks. Sleeping Cell (SC) is a cell
degradation problem, and a special case in Cell Outage Detection
(COD) because it does not trigger any alarm due to hardware
or software problems in the BS. To minimize the effect of such
outages, researchers have proposed autonomous outage detection
and compensation solutions. State-of-the-art SC detection depends
on drive tests and subscriber complaints to identify the effected
cells. However, this approach is quickly becoming unsustainable
due to rising operational expenses. To address this particular
issue, we employ a Deep Learning based framework which uses
Minimization of Drive Tests (MDT) functionality introduced in
LTE networks. In our proposed framework, MDT measurements
are used to train the deep learning model. Anomalies or cell
outages in the network can be then quickly detected and localized,
thus significantly reducing the duty cycle of self-healing process
in SON. In our simulation setup, we also quantitatively compare
and demonstrate superior performance of our proposed approach
with state of the art machine learning algorithm such as One Class
SVM using multiple performance metrics.

Index Terms—Self Organizing Networks (SON), Self-healing,
Anomaly Detection, Sleeping Cells, Minimization of Drive Tests
(MDT), Deep Autoencoders, One Class SVM

I. INTRODUCTION

Self-x functions [1] in SON are one of the key enablers to
meet the stringent requirements of next generation cellular net-
works, such as high capacity, ultra-low latency, better Quality
of Service (QoS) and Quality of Experience (QoE) to the end
users while reducing the Total Cost of Ownership (TCO) of
the network, which includes CAPital EXpenses (CAPEX) as
well as OPerational EXpenses (OPEX). Traditional network
troubleshooting techniques are one of the many use cases
that have been replaced by the self-healing function block
in SON, which mainly consists of autonomous cell outage
detection (COD) and compensation (COC) methods, without
any dependence on drive tests or complaints of the users.

Motivated by this, we propose a Deep learning based ap-
proach for detection of Sleeping Cells, which is a particular
case of Cell Outages, that does not generate any alarm at the
Operation and Maintenance (O&M) system due to HW or SW
failures at the BS. We leverage MDT functionality specified by

3GPP, to construct a database from user reported measurements
containing information regarding network behavior.

Earlier research efforts for fault detection in cellular net-
works have mostly relied on performance deviation methods
[2]. In [3], authors proposed a method for outage detection by
analyzing the variations in the visibility relation graph between
cells by utilizing NCL reports. Recently, unsupervised learning
techniques have also been proposed for automating the process
of outage detection. In [4], input embedded measurements are
assigned to different classes using fuzzy clustering. Anomalies
are then detected by observing the trajectory of embedding
measurements. MDT measurements based anomaly detection,
initially proposed in [5], used diffusion maps for revealing
the hidden structures inside the data and applying k-means
clustering for detecting anomalies, whereas [6] compared the
performance of Local Outlier Factor (LOF) and One Class Sup-
port Vector Machine (OC-SVM) based algorithms for anomaly
detection in LTE networks. In [7], the author has provided
a complete survey of outage detection techniques in mobile
cellular networks.

Our proposed sleeping cells detection approach is different
from the traditional techniques in the sense that it uses deep
learning to model the normal operating profile of the net-
work by collecting MDT reports from user equipment (UE).
The trained model is then able to efficiently detect anoma-
lous behavior in the network at real-time. Furthermore, using
the location information stored in the MDT database, every
faulty/sleeping cell is localized for autonomous self-healing
process in SON. We also quantitatively compare and evaluate
the accuracy and average precision of our Deep Autoencoder
based Detector with One Class Support Vector Machine based
Detector. To our knowledge, no previous study examines the
use of deep learning based solution for cell outage / sleeping
cell detection in 5G and next generation networks.

The rest of the paper is structured as follows: System model
is presented in Section II, which includes the One Class SVM
and Deep Autoencoder models for learning the normal network
profile and detect faulty cells in the network. Section III
presents the simulation configuration, models assessment and
evaluation by different performance metrics. Finally section IV
concludes the paper.

978-1-5386-4727-1/18/$31.00 ©2018 IEEE

II. SYSTEM DESIGN

A four step approach is proposed for detection of sleeping
cells in cellular networks. It consists of 1) Data collection, 2)
Data preprocessing, 3) Data mining and 4) Data visualization.
The idea is to model the network during normal operating
scenario using MDT measurements and use that model to detect
sleeping cells later on.

A. Data Collection

MDT feature for SON was introduced in 3GPP Release
9 [8]. Each MDT measurement sample consists of several
KPI’s such as latitude, longitude, serving and neighboring cells
RSRP and SINR reported by the UE, as specified in Table I.
Moreover, time information is appended by the eNB before
forwarding it to the Operations and Maintenance system where
an MDT database is constructed. The database constructed
during normal working scenario of the network act as training
data while modeling the normal network behavior, which is
then used to detect cell outages during faulty scenario.

TABLE I
PARAMETERS SELECTED FROM MDT MEASUREMENTS

Parameters Description

Serving RSRP Reference Signal Received Power of
serving cell in dBm

Neighbor RSRP Reference Signal Received Power of
three strongest neighbor cells in dBm

Serving SINR Signal to Interference plus Noise Ratio
of serving cell in dB

Neighbor SINR Signal to Interference plus Noise Ratio
of three strongest neighbor cells in dB

Location Location co-ordinates of a UE

CGI Cell Global Identity Information of the
serving cell

B. Data Preprocessing

Each MDT measurement sample collected is pre-processed
before using it for network modeling or testing. Initially data
is cleaned by splitting each MDT sample into header and
data part. The header contains time, location and cell identity
information which is not used for data mining algorithms but
for visualization of the results later on. The data part can be
represented by a 8-dimensional feature vector as follows:

F = {RSRPS , RSRPN1, RSRPN2, RSRPN3,

SINRS , SINRN1, SINRN2, SINRN3} , (1)

where RSRPS and SINRS are the serving cell parameters,
whereas RSRPNi and SINRNi are the ith strongest neigh-
boring cell parameters, i={1,2,3}. This 8-dimensional feature
vector corresponds to one MDT measurement sample in the
training and test databases.

C. Data Mining

To detect cell outages in the network, two state of the art
algorithms, One Class Support Vector Machine and Deep
Autoencoders are employed for modeling network dynamics
and detect anomalies (i.e. sleeping cells).

1) One Class Support Vector Machine based Detector:

To make data mining process faster, simpler and to mit-
igate the curse of dimensionality, high dimensional dataset
is embedded to two dimensions in Euclidean space using
Multi-Dimensional Scaling (MDS) method. This critical data
transformation step facilitates data modeling and also improves
accuracy of anomaly detection algorithms. Moreover, MDS
method unlike Principal Component Analysis (PCA), does
not assumes linear relationship between the variables and is
therefore more suitable for non-linear datasets. The goal of
MDS is to map the given data points {xt ∈ Rm}Nt=1 to their
low dimensional embedding points {yt ∈ Rn}Nt=1 in such a
way that the dissimilarity δij between xi and xj are well
approximated by the distance dij between yi and yj . This is
an optimization problem and can be done by the minimization
of following loss function called Stress:

Stress(y1, ., yN) =

 ∑
i6=j=1,.,N

(δij − dij)2
1/2

, (2)

where δij = ‖xi−xj‖ and dij = ‖yi−yj‖. This Stress function
is basically the residual sum of squares and the outer square
root gives greater spread to small values. The steps in classical
MDS algorithm are as follows:

(i) Compute the squared dissimilarity matrix ∆(2) = d2ij

(ii) Construct a Gram Matrix D = − 1
2H

T∆(2)H ∈ RN×N
by applying double centering to the squared dissimilarity
matrix, where H = I− 1

N 1N1TN is the centering matrix
(iii) As D is power spectral density, we can write it as D =

XTX, which after Singular Value Decomposition can be
decomposed into XTX = VΛVT = YTY, where V ∈
RN×n and Λ ∈ Rn×n

(iv) Solving above equation gives the embedding matrix
Y = Λ1/2VT ∈ RN×n, where V and Λ are the top n
eigenvalues of XTX and their corresponding eigenvectors
respectively. That is each column yi ∈ Rn in Y is an
embedding of xi

In our case n = 2 is chosen for easy visual representation
of the measurements and to aid the process of outage detection
by increasing the variance among the dissimilar measurements,
so that the SVM detector can detect network anomalies with
higher accuracy and detection rate.

The support vector method for novelty detection described
in [9] is different from the traditional two class SVM in the
sense that it uses training data from only one class for creating
a model and then labels only those measurements from the test
dataset as anomalies which are significantly different from the
learned model.

Now consider our embedding MDT dataset FN in which
yi ∈ Rn (where n = 2 in our case) are embedding points.
SVM will project the data to a high dimensional feature space
S through a non-linear function φ by creating a non-linear
decision boundary. The hyperplane that is constructed in the
feature space determines the margin between the classes and
is represented by the equation ωTy + b = 0, where ω ∈ S is
the norm perpendicular to the hyperplane and b ∈ R is the bias
of the hyperplane. In One-Class SVM, hyperplane is selected
which has the maximum distance from the origin in feature
space. This is done by optimally selecting the value of ω and
b through the objective function:

min
ω,b,ξi

‖ω‖2

2
+

1

νn

n∑
i=1

ξi − ρ , (3)

subject to:

(ω.φ(yi)) ≥ ρ− ξi, ξi ≥ 0 .

Here ξi is the slack variable which creates a soft margin
and prevents the classifier from over-fitting by allowing some
training data points to lie within the margin, ρ is an offset and
ν ∈ (0, 1) sets the upper bound on the fraction of margin
errors (false positives) and a lower bound on the fraction
of support vectors relative to the total number of training
examples. This results in a function which returns +1 for most
of the data points (training data) and −1 elsewhere (outliers).
The minimization formulation in Equation 3 after solving for
the Lagrange dual results in the following classification rule:

f(y) = sgn((ω.φ(yi))− ρ) = sgn(

n∑
i=1

αiK(yi, y)− ρ) . (4)

Here αi are the Lagrange multipliers, patterns yi with non-
zero αi are the support vectors and K(yi, y) is the Kernel
function, which tricks the SVM classifier by creating non-
linear decision boundaries and hence classify non-linear sep-
arable datasets also. Popular choices for kernel function are
linear, polynomial, sigmoid and Gaussian Radial Base Function
(RBF). RBF kernel function, used in our system is:

K(y, y
′
) = exp

(
−‖y − y

′‖
2

2σ2

)
. (5)

Here σ ∈ Rn is a kernel parameter and ‖y − y
′‖ is the

dissimilarity measure. The exact values of the parameters used
in our model are selected by grid search using cross validation
algorithm explained in next section.

2) Deep Autoencoder based Detector:

Deep Autoencoders described in [10] are feed-forward multi-
layer artificial neural network used for unsupervised learning.
Like any other neural network, it consists of an input layer,
hidden layers in the middle and then an output layer, but au-
toencoders are trained to reproduce its input at the output layer.
Hidden layers are low-dimensional images or representations

of the input data. The part of the network that encodes the
input data to its latent representations is called an encoder and
the decoder is responsible for reconstructing the input from
these representations. Now consider a neural network having
an input layer x = h(1) ∈ Rm, k hidden layers {h(l) ∈ Rn}k+1

l=2

where n ∈ N, n < m are the hidden units or neurons in each
hidden layer and the superscript l denotes the index for each
layer, then the latent representation of the hidden layers can be
written as:

h(l+1) = σ(l)
(
W(l) · h(l) + b(l)

)
. (6)

Here σ(·) is the activation function, W is the weight matrix,
h is the vectorized input and b is the bias vector. The popular
choices for an activation function include sigmoid σ(x) = (1+

e−x)−1, its variant, hyperbolic tangent σ(x) = ex−e−x

ex+e−x and
rectified linear unit (ReLU) σ(x) = max(0, x). The output of
the first layer will become the input for next layer. Lastly the
given input sequence is reconstructed at the output layer after
k hidden layers as follows:

x̂ = h(k+2) = σ(k+1)
(
W(k+1) · h(k+1) + b(k+1)

)
. (7)

Autoencoders can be as deep as you want but in our
experiment we use k = 3 hidden layers to model the input
training data. Adding hidden layers allows an autoencoder to
learn more complex representations, as do non-linear hidden
units or neurons. The number of neurons per layer decreases
in each subsequent layer of the encoder and increases back
in the decoder. Autoencoders are trained to minimize the
reconstruction error, for this purpose, a loss function is used to
compute the error between the original and reconstructed input
after each forward pass.

Typically in deep learning, for binary input data, Cross
Entropy loss function is used, but for real valued input data
as ours, Mean Squared Error loss function is used. Further
to prevent overfitting on the training data, a regularization
term is added to the loss function to apply penalty during the
optimization phase. This will result in sparser representations
of input data. In our case, L1 activity regularization is used.
Loss function can be therefore written as:

L(x, x̂) = ‖x− x̂‖2 + λ

2
‖x̂‖1 . (8)

The error is then back-propagated to update the weight
matrices after each forward pass to minimize the reconstruction
error. Adam’s algorithm for stochastic optimization is used for
back-propagation which is more computationally efficient than
stochastic gradient descent and it combines the advantages of
Adaptive Gradient (AdaGrad), which works well with sparse
gradients and Root Mean Square Propagation (RMSProp),
which works well in non-stationary settings [11]. At each train-
ing iteration i, Mi and Ri, the exponential moving averages of
the gradient and the squared gradient respectively are computed
as follows:

Mi = β1 ·Mi−1 + (1− β1)∇Li , (9)

Ri = β2 ·Ri−1 + (1− β2)(∇Li)
2 . (10)

Here β1, β2 ∈ [0, 1) are the decay rates or forgetting
factors of Mi, also known as 1st moment (or Mean) and
Ri, also known as 2nd moment (or Variance) of the gradient
respectively. Both of these moments are initialized as vectors
of 0’s, resulting in biasness. Therefore, after bias correction,
the resulting moment’s estimates are as follows:

M̂i =
Mi

1− (β1)i
, (11)

R̂i =
Ri

1− (β2)i
. (12)

The updated weight matrix after ith iteration will be:

Wi = Wi−1 − α
M̂i√
R̂i + ε

. (13)

Here α > 0 is the learning rate and ε > 0 is a small
numerical term used to avoid division by zero. After the
training phase, the test MDT measurements are predicted using
the learned model and their mean squared error is computed. It
has been observed that a threshold θ of MSE exists above which
a measurement can be classified as anomalous as shown in
Figure 4. In our case, threshold θ is chosen to be two standard
deviations above the mean of MSE of test measurements.

D. Data Visualization

After the anomaly detection phase, every classified measure-
ment is localized on the network topology using the location
information stored in header part of the MDT database. This
header part was not utilized during the data mining phase and
is only used to visualize the sleeping cells after detection. The
cell containing the highest number of anomalous measurements
can be identified as a sleeping cell.

III. SIMULATION RESULTS

A. Simulation Configuration

A typical urban macro cell based network topology con-
sisting of 7 cells / 21 sectors is created following 3GPP
specifications using a full dynamic network topology simulator
by Monte Carlo method. The inter-site distance (ISD) between
cells is 1000m whereas the path loss and shadow fading vary
with the UE link being LoS or NLoS. Cell association is not
changing in this experiment, hence no mobility is considered.
The simulation campaign generates the MDT reports from
the UE’s (consisting of RSRP and SINR of serving and
neighboring cells, as explained in Section II-B), for normal
as well as outage scenario. To model a sleeping cell during the
outage scenario, the antenna gain and transmit power of a BS
is attenuated. MDT measurements reported by the users from
the normal scenario are used to construct the training dataset,
whereas the test dataset is constructed using the reported
measurements from outage scenario, which is then used to
evaluate the performance of anomaly detection models. The

(a) REM of Normal Scenario (b) REM of Outage Scenario

Fig. 1. (a) Radio Environment Map of Normal Scenario (b) Radio Environ-
ment Map of Outage Scenario where Antenna Gain of one sector of a BS is
attenuated to -50 dBi

SINR based Radio Environment Maps are shown in Figure 1.
The detailed simulation parameters are listed in Table II.

TABLE II
SIMULATION PARAMETERS

Parameter Values

Cellular Layout 7 Macrocell sites

Sectors 3 sectors per BS

Inter Site Distance 1000m

User Distribution Uniform Random Distribution

Distance dependant Path Loss LLoS[dB] = 22log D + 34.02,
LNLoS[dB] = 39.1log D + 19.56
where D is distance in meters

Slow Fading SD 4 dB (LoS) and 6 dB (NLoS)

BS Transmit Power 46 dBm (Normal Scenario)
0 dBm (SC Scenario)

Antenna Gain 17 dBi (Normal Scenario)
-50 dBi (SC Scenario)

Carrier Frequency 2 GHz

Bandwidth 10 MHz

B. Models Assessments and Evaluation

For training and assessing the performance of our anomaly
detection models, different algorithms and performance metrics
are used. Algorithm 1 explains the training phase of One Class
SVM, in which Grid Search and Cross Validation techniques
are employed to maximize the performance of the model. Ini-
tially a parameter search space is defined for regularization con-
stant ν and kernel parameter σ. In our experiment, logarithmic
grid for hyper-parameter optimization is used to search a bigger
search space quickly. ν is varied from log10 [−5 : −1] and σ
is varied from log10 [−4 : 1]. N-fold cross validation (N=10
in our case) is then employed on every unique combination
(ν, σ) iteratively to find the optimal hyper-parameter pair with
highest performance estimate. This combination is used to train
the OCSVM model and Figure 2 shows the classification of test
dataset in Euclidean Space.

For training Deep Autoencoder based neural network, as
explained in Algorithm 2, 4 fully connected layers with 4, 2,

Algorithm 1 One Class SVM Training Algorithm
1: Input embedding dataset FN, νmin, νmax, σmin, σmax
2: for ν = νmin : νmax : do
3: for σ = σmin : σmax : do
4: Partition the dataset FN randomly into n sets
5: for i = 1, 2, ..., n : do
6: Train the SVM model using Fn−1 and then

validate its performance θi on Fi
7: end for
8: Compute average performance θav over n sets
9: end for

10: end for
11: Train the model on the parameter ν and σ values

corresponding to highest value of θav

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
Novelty Detection

learned frontier
training observations
new regular observations
new abnormal observations

Fig. 2. MDT Measurements in Euclidean Space classified by One Class SVM
based Detector

2 and 8 neurons respectively are used, where first 2 layers are
used for encoder and last 2 for decoder part. Hyperbolic tangent
activation function is used for Layer 1 and 3 whereas ReLU
function is used for Layer 2 and 4 in our network. Additionally
L1 activity regularization is used to prevent overfitting on the
training data. Training dataset is trained over 100 epochs with
mini-batch updates of batchsize = 32. Mini-batch updates are
typically used because of memory constraints in large datasets
and only a subset (32 measurement in our case) is used for
each parameter update. Therefore 100 epochs/iterations are
performed, so that our algorithm can converge to an acceptable
level of accuracy. Initially the weights are randomly set and
after one complete forward pass, error is back-propagated to
update the weight matrices using Adam’s algorithm. The hyper-
parameters are initialized with typical default values of M0 =
0, R0 = 0, α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8,
which are automatically optimized with each iteration to reduce
the model loss, as shown in Figure 3. Furthermore, it can be
seen from Figure 4, that the reconstruction error of anomalous
measurements in test dataset is significantly higher than that of
normal measurements.

The performance of our anomaly detection models is evalu-
ated using AUROC and AUPRC performance metrics. AUROC
is the Area Under the Receiver Operating Characteristic curve
plot, also known as detection accuracy, which is basically the

Algorithm 2 Deep Autoencoder Training Algorithm
1: Given N input sequences x, k hidden layers, Epoch = NE ,

Mini-Batch Size = NB ,
2: for h = 1, 2, ..., NE : do
3: for i = 1, 2, ..., N/NB : do
4: for l = 2, ..., k + 1 : do
5: Using NB input samples, compute activations

h
(l)
i for lth hidden layers using Eq. (6)

6: end for
7: Reconstruct input x̂i at output layer using Eq. (7)

and complete a feed forward pass
8: Find reconstruction error through Loss function

Li(xi, x̂i) using Eq. (8)
9: for l = k + 1, k, k − 1, ..., 2 : do

10: Backpropagate the error by first estimating 1st

moment M
(l)
i and 2nd moment R

(l)
i of the

gradient of Loss function using Eq. (9) and (10)
11: Perform Bias correction on M

(l)
i and R

(l)
i and

compute M̂
(l)
i and R̂

(l)
i using Eq. (11) and (12)

12: Update the weight matrix W
(l)
i using Eq. (13)

13: end for
14: end for
15: end for

� �� �� �� �� ���

����

���

���

���

���

���

��
��

��������	�
�����	�

Fig. 3. Model Loss over each Epoch

� ��� ��� ��� 	��
����������������������

���

���

���

���

���

���

���

�
��

��
��
��
��
��
��
��
��
�

�����

��������
���������

Fig. 4. Reconstruction Error of Test MDT Measurements by Deep Autoencoder

��� ��� ��� ��	 ��
 ���
���#��� #�$�&����$�

���

���

���

��	

��

���

�"
%�

��
 #
�$�
&�
��
�$
�

���!�%$ ��� ��"������������
���
�������##�����������������

�

(a) ROC Curve Plot

��� ��� ��� ��	 ��� ���
������

���

���

���

��	

���

���

�!
��
�"
��
�

��� ��$#�������!����������������
�������""����������������
���

(b) PR Curve Plot

Fig. 5. (a) Receiver Operating Characteristic Curve and (b) Precision Recall Curve of Deep Auto-encoder and One Class SVM based Detectors

true positive rate of the classifier plotted against the false
positive rate at different threshold levels, whereas, AUPRC is
the Area Under the Precision Recall Curve, also known as
average precision, which is specifically useful for evaluating
classifiers on highly imbalanced datasets such as ours, where
the majority of test measurements only belong to one class
(normal measurements in our case). Here precision is basically
the probability of a measurement classified as positive to actu-
ally being positive, whereas Recall is just the true positive rate.
The precision-recall curve basically highlights the performance
differences lost in ROC curves. Figure 5 shows that Deep
Autoencoder outperforms One Class SVM, as it has higher
AUROC and AUPRC.

TABLE III
PERFORMANCE COMPARISON FOR ANOMALY DETECTION MODELS

Models AUROC Score AUPRC Score

Deep Autoencoder 0.99 0.94

One Class SVM 0.94 0.87

IV. CONCLUSION

This paper has presented an approach for autonomic de-
tection of sleeping cells using deep learning technique. The
conventional methods for outage detection are time-consuming
as they involve drive tests and complaints from the customers,
hence our proposed autonomic framework will significantly
reduce the duty cycle of self-healing function in SON. In the
proposed framework, MDT reports collected from the end users
are used to construct a database, which after pre-processing is
fed to our data mining framework. Deep Autoencoders are used
to train the normal network model. Anomalous measurements
in test dataset can then be identified based on their higher
reconstruction error than normal ones. We then compare the
performance of Deep Autoencoder and One Class SVM based
detector for sleeping cell detection. Our experiments have
shown that Deep Autoencoder based detector has higher de-

tection accuracy (AUROC) and average precision (AUPRC) as
compared to One Class SVM, as listed in Table III. Ultimately,
sleeping cells can be visualized using the location information
stored in each MDT measurement. The proposed sleeping cell
detection framework can be extended to also identify other
performance degradation problems in the network.

V. ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant Numbers 1559483, 1619346
and 1730650. For further information about these projects
please visit www.AI4Networks.com.

REFERENCES

[1] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans, “A survey of self
organisation in future cellular networks,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 1, pp. 336–361, 2013.

[2] B. Cheung, S. Fishkin, G. Kumar, and S. Rao, “Method of moni-
toring wireless network performance,” Mar. 23 2006, uS Patent App.
10/946,255.

[3] C. M. Mueller, M. Kaschub, C. Blankenhorn, and S. Wanke, “A cell out-
age detection algorithm using neighbor cell list reports,” in International
Workshop on Self-Organizing Systems. Springer, 2008, pp. 218–229.

[4] Q. Liao and S. Stanczak, “Network state awareness and proactive
anomaly detection in self-organizing networks,” in Globecom Workshops
(GC Wkshps), 2015 IEEE. IEEE, 2015, pp. 1–6.

[5] F. Chernogorov, J. Turkka, T. Ristaniemi, and A. Averbuch, “Detection
of sleeping cells in lte networks using diffusion maps,” in Vehicular
Technology Conference (VTC Spring), 2011 IEEE 73rd. IEEE, 2011,
pp. 1–5.

[6] A. Zoha, A. Saeed, A. Imran, M. A. Imran, and A. Abu-Dayya, “Data-
driven analytics for automated cell outage detection in self-organizing
networks,” in Design of Reliable Communication Networks (DRCN),
2015 11th International Conference on the. IEEE, 2015, pp. 203–210.

[7] A. Asghar, H. Farooq, and A. Imran, “Self-healing in emerging cellular
networks: Review, challenges and research directions,” IEEE Communi-
cations Surveys & Tutorials, 2018.

[8] Technical Specification Group Radio Access Network. Study on Minimiza-
tion of drive-tests in Next Generation Networks, 3GPP, 12 2009, version
9.0.0.

[9] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt, “Support vector method for novelty detection,” in Advances in
neural information processing systems, 2000, pp. 582–588.

[10] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

