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Abstract—Current LTE network is faced with a plethora of
Configuration and Optimization Parameters (COPs), both hard
and soft, that are adjusted manually to manage the network and
provide better Quality of Experience (QoE). With 5G in view,
the number of these COPs are expected to reach 2000 per site,
making their manual tuning for finding the optimal combina-
tion of these parameters, an impossible fleet. Alongside these
thousands of COPs is the anticipated network densification in
emerging networks which exacerbates the burden of the network
operators in managing and optimizing the network. Hence, we
propose a machine learning-based framework combined with a
heuristic technique to discover the optimal combination of two
pertinent COPs used in mobility, Cell Individual Offset (CIO)
and Handover Margin (HOM), that maximizes a specific Key
Performance Indicator (KPI) such as mean Signal to Interference
and Noise Ratio (SINR) of all the connected users. The first part of
the framework leverages the power of machine learning to predict
the KPI of interest given several different combinations of CIO
and HOM. The resulting predictions are then fed into Genetic
Algorithm (GA) which searches for the best combination of the
two mentioned parameters that yield the maximum mean SINR
for all users. Performance of the framework is also evaluated using
several machine learning techniques, with CatBoost algorithm
yielding the best prediction performance. Meanwhile, GA is
able to reveal the optimal parameter setting combination more
efficiently and with three orders of magnitude faster convergence
time in comparison to brute force approach.

Index Terms—Machine Learning, SON, Genetic Algorithm,
Optimization, Cell Individual Offset (CIO), Handover Margin
(HOM).

I. INTRODUCTION

Since its advent, the wireless network has undergone several
phases of technological advancement. From 2G technology
which mainly supports voice communication to 4G which
brought us high speed internet and now to upcoming 5G
which promises ultra-fast connection speed and massive ca-
pacity. However, alongside this development is the increase
in intricacy of the cellular network. As a rule of thumb,
the more services a network supports, the more complex the
functionalities and configuration parameters of the network
become. This rise in complexity can be mirrored by the fact that
the number of COPs per site has risen steadily from 500/site
for 2G to 2000/site for 5G.

These COPs directly impact the networks performance and
are usually measured through Key Performance Indicators
(KPIs). COPs that are sub-optimally tuned usually lead to

poor network performance and degraded KPIs which ultimately
result to unsatisfactory user QoE. That is why it is critical
to make sure that these parameters are correctly set and
adjusted. Current industry practice is to tune these parameters
manually based on domain knowledge, intuition and sometimes
hit and trial approach. However, manual configuration of these
numerous parameters can be time consuming, inefficient and
expensive on the side of the operators. As a result, mobile
operators tend to deal on tweaking a limited number of COPs
to improve certain KPIs, therefore limiting the possibility of
deriving the utmost performance that a network can achieve. In
addition, the expected densification in emerging network will
add to this problem which will make optimal parameter setting
discovery unfathomable.

In order to tune these parameters properly, it is essential to
learn how KPIs behave with the variations in COPs. However,
as operators try very little combinations of configuration pa-
rameters in real networks, it is very difficult to interpolate and
learn the behavior of the system performance due to changes
in COPs. For this reason, the task of modeling COP-KPI
relation is almost impossible using conventional interpolation
techniques. This is where Machine Learning (ML) comes
into play. With machine learning, it is possible to model and
map out functions that cannot be directly or mathematically
interpreted in the data [1], [2]. This capability makes machine
learning a promising tool to accurately capture the network
dynamics due to changes in COPs even with very little and
sparse experiment data.

To overcome the current challenges of learning COP-KPI
relations and finding optimal Configuration and Optimization
Parameter (COP) combination to maximize KPIs, we have
proposed a framework that involves: first, leveraging the power
of machine learning to learn and predict the network perfor-
mance given a set of COP using data gathered from a realistic
industry-grade simulator and second, finding the optimal COP
combination values that will yield the maximum KPI using a
heuristic search technique in the form of GA. In this paper, two
pertinent COPs related to mobility, CIO and HOM are chosen,
with mean SINR as the optimized KPI.



A. Relevant Work

3GPP [3] introduced the CIO parameter as an LTE standard
that controls handover and ensures proper load balancing from
one cell to another. Since then, CIO has been a parameter of
interest to the research community to find out the optimal
values of CIO that lead to a desired KPI. However, sole
optimization of CIO also generated further challenges in cell
management resulting to a drop in SINR [4]. It is therefore
pertinent that CIO is combined with other mobility parameters
like hysteresis and Time-to-Trigger (TTT) to taper off mobility
related problems such as handover failure cases like too early,
too late and handover to wrong cells.

Authors in [5] observe the effect of HOM and TTT on
call drop ratio (CDR) and handover ratio and conclude that
the effect of TTT is inconsequential. However, the underlying
task is not only to discover what particular set of parameters
has more influence on a desired KPI but the set of values of
these parameters that produce the optimal KPI. Authors in [6]
determine optimal values of TTT and CIO from initial subop-
timal configurations based on weighting factors with respect
to handover failure cases. In [7], authors discuss the optimal
values of HOM with respect to user mobility and handover
failure rates while authors in [8] use TTT and HOM to address
the same issue. However, none of these aforementioned studies
leveraged on machine learning to derive optimal values of
parameters.

Most of the relevant studies either used machine learning
(ML) techniques to tune hard parameters or used a single ML
algorithm for KPI optimization. Authors in [9] used ML to
optimize the same KPI in our study but with reference to hard
parameters like antenna azimuth. Although authors in [10] used
machine learning, support vector machine (SVM) in particular,
they tuned one handover parameter, CIO to enhance user
throughput. In [11], authors use GA without any application
from ML to determine optimal values of just HOM to attain
reduction in power consumption.

In this paper, ML is utilized to capture the KPI behavior
with changes in COPs before applying GA to maximize the
objective function. In that light, the main contributions of this
paper are:

• A novel combination of mobility parameters consisting
of CIO and HOM as COPs for COP-KPI modeling using
machine learning

• Performance comparison of different ML algorithms for
COP-KPI modeling

• Use of genetic algorithm on the outputs of ML model for
faster convergence to achieve optimal COP combination

B. Parameters Definition

1) Cell Individual Offset (CIO): This is a measurement
quantity used to determine cell association, regulate cell
coverage and usually incorporated in power measurement
to control handover. As shown in Fig. 1, handover can be
made earlier (or later) by changing the CIO values. CIO is
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Fig. 1. Effect of CIO on Handover and SINR

usually given positive or negative values; where a positive
value augments the RSRP of the cell and a negative value
diminishes the RSRP of intended cells. Fig. 1 also shows
the effect of suboptimal CIO tuning in terms of SINR.
As the figure shows, wrongly tuned CIO can cause too
early handover where the source cell is still better than
the target cell resulting to high interference and thus poor
SINR.

2) Handover Margin (HOM): HOM is a mobility related
parameter that administers handover. As shown in Fig.
1(a) and(b), it is the assigned threshold that must be met,
when the power of a target cell begins to exceed the power
of the serving cell. It is usually within the range of 0 to
10dB.

3) Capacity: We can define cell capacity in terms of SINR.
SINR is mostly used for radio link quality and throughput
measurements. With throughput being the maximum data
rate within a channel and from shannon capacity in
equation (2), increase in SINR will lead to a proportional
increase in capacity. [4] described this relationship in
expression (2). The mean SINR of a user associated with
a cell s for a given time slot t is:

γsx =
P s
t d

s
x

Σi
1wiP i

t d
i
x +Np

(1)

Capacity = Ns −
1

wi

∑
X

τx
log2(1 + γsx)

(2)

where γsx is the average SINR of user x and cell s, with
P s
t and P i

t as transmission powers of cell s and interfering
cell i, dsx and dix as the pathloss components of associated
cell x and interfering cells i respectively. N is the noise, wi

the load of the interfering cell and Ns the total physical
resource blocks (PRB).

The rest of this paper is organized as follows: Section
II highlights the proposed framework, Section III discusses
the simulation setup. In Section IV, results and analysis are
presented and finally Section V concludes the paper.
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II. SYSTEM FRAMEWORK

As shown in Fig. 2, the proposed system framework takes
into consideration three processes to achieve the objective func-
tion. First is the data generation part. For this, an industry grade
system level simulator is used. Simulators have the advantage
of generating large amount of data such as COP-KPI relations
which are otherwise impossible to gather from a real network.
The second part of the framework is the KPI prediction using
machine learning techniques. Here, COP combination and KPI
data gathered from the simulator are used to train the machine
learning models and learn how changes in COP combinations
affect the KPIs. This prediction model enables network opera-
tors to envisage network behaviours and extrapolate important
information. The last part of the framework involves discovery
of the optimal parameter values using genetic algorithm. In this
stage, prediction model of best performing machine learning
model is used to initialize parameters. Detailed discussion of
the data generation, machine learning techniques used, and how
genetic algorithm is leveraged is shown below.

A. Data Generation

In order to learn how the cellular network behaves with
changes in COP values, one approach is to try several combi-
nations of these parameters and then observe the resulting KPI
trends. However, this approach is not practical especially in live
networks as there are hundreds of thousands of parameter com-
binations possible. Aside from that, one badly tuned parameter
might impose a huge risk in the network’s performance. For
this reason, simulators are a viable alternative to gather data
which cannot be done on a live network due to the above-
mentioned restrictions.

We wrote a script to automate the data generation process.
This script automatically changes the values of COPs and
records the resulting KPI for each combination. The output
of the simulator coupled with the automation script is a table
of different CIO and HOM combinations with the expected
SINR for each combination. The data is utilized to train several
machine learning models and also to predict the average SINR
for each CIO-HOM combination. Models are trained in two
types of training data, one using all possible combinations (100
percent) and one using only (10 percent) of the training data.

This is done to test the robustness of the machine learning
model to sparse data which is usually the case in a real cellular
network.

B. Machine Learning Algorithms for KPI Prediction

Machine Learning can be categorized as supervised and
unsupervised learning. The former requires a set of training
data to learn from and maps to a corresponding output based
on observed relationship from the trained data while the latter
takes unlabelled data and understands its distribution to map
into several labels. Supervised learning can be further cate-
gorised as classification and regression problems. The linearity
or non-linearity of these relationship are usually represented
and this differs from model to model. We apply various ML
algorithms and observe their prediction performance. In this
paper, five machine learning models are evaluated.

1) Linear Regression: This method is an example of a
solution to a regression based problem which describes the
functional relationship between dependent (yi) and independent
attributes (xi) by ascribing weights, w to the function through
a method of linearity as shown in equation (4). The target
attribute (dependent variable), is extracted from a set of N
input features with coordinates (xi, yi)

N
i=1 and f(xi) being a

function of the weights φ(xi, w)[12] . This can be summarized
in equation (3) where ε is the error.

yi = f(xi) + ε (3)
yw,b = wx+ b (4)

2) K-Nearest Neighbor (KNN): KNN makes no assumption
for distribution of vectors by using distance calculation mea-
sures to categorize a set of input features in vector space based
on a variable, k, which symbolizes the number of neighbors or
surrounding features. Essentially, as batches of new indepen-
dent features are introduced, it locates the k neighbors closest
to the new features and ascribes them to a target majority.
The major distance metrics are cosine similarity and euclidean
distance.

3) Extreme Gradient Boosting (XGBoost): This is an in-
stance of a category of gradient boosting called ensemble learn-
ing which aggregates multiple weak models (trees), iterates
through them by ascribing weights to each model to give a final



model. Rather than some random selection, each subsequent
model is a correction of the previous. Two objective parameters
are introduced here namely training loss and regularization
function as shown in equation (5).

obj(θ) = L(θ) + ω(θ). (5)

Here L represents training loss and ω, regularization. XGBoost
adds some extra functions to reduce computational complexity
and improve on scalability and prediction accuracy.

4) Categorical Boosting (CatBoost): This is another cate-
gory of gradient boosting which falls under ensemble methods.
CatBoost was developed to give a better performance than
its contemporaries like XGBoost and LightGBM in terms of
efficiency, reducing the time wasted on tuning of parameters
through excellent default functions and reduces overfitting on
training samples. It uses an ordered mechanism to get training
samples per time.

5) Deep Neural Network (DNN): DNN is a class of Ar-
tificial Neural Network (ANN) inspired by the biological
brain that consists of hidden layers between input and output,
represented by multi-perceptrons to discover hidden features
and layers of inputs. Each hidden layer is supported by
activation functions among which are TanH, Sigmoid and ReLu
depending on the nature of the problem. The outputs also are
supported by optimizers namely Stochastic Gradient Descent
(SGD), AdaDelta, AdaGrad and Adam with the latter being the
most efficient. DNN is able to learn intricate characteristics of
input vectors and categorize them more efficiently.

C. Genetic Algorithm

To show the intrinsic nature of the relationship between
objective function and parameters, a plot of SINR as a function
of CIO and HOM for one base station (BS) is shown in Fig. 3.
From this figure, the problem is seen as a non-convex function
which can also be termed as a NP-hard optimization problem
with several local maxima and a global maxima. We use genetic
algorithm (GA) in conjunction with machine learning model
as the heuristic optimization technique based on its induction
from natural and biological evolution.
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Fig. 3. Non-convexity of Objective Function.

Essentially, GA generates a population of a specified size
that consists of several individuals (or solutions), each consists

Algorithm 1 Genetic Algorithm for Objective Function
Input:

Parameters X(CIO1, CIO2, CIO3, HOM1, HOM2,
HOM3)
Machine learning model (F)
sample/iteration P
Maximum Generation G
Population Pop
Crossover Cr
Mutation M

Output:
Solution Xsol = X(CIO1, CIO2, CIO3, HOM1, HOM2,
HOM3)
argMax[X, f(X)]

1: Randomly generate parameters from X with size P;
2: Assign fitness function from F for each sample P;
3: open an empty set POP and save P inside;
4: for i=1 to G do
5: evaluate POP for each P sample using F;
6: create an empty set called Parent Par;
7: select best elites from POP and save in Par;
8: for two best elites in Par do
9: perform crossover Cr (Par1, Par2);

10: get two children from Cr and mutate each;
M(Cr1,Cr2);

11: end for
12: Store each child solution and update in Pop;
13: end for
14: Return: The last set of POP and that becomes Xsol

of variables that are randomly initialized. In our framework,
these initial values are pulled from the ML prediction func-
tion. A criteria is set for maximum iteration, where for each
iteration, solutions are generated and passed to the subsequent
generation. The algorithm keeps iterating until it converges to
an optimal solution. Each of the solutions in these generations
are evaluated by a fitness function derived from the machine
learning model to select elites considered as the best solutions
or parents that are further iterated for crossover and muta-
tion. Algorithm 1 shows the pseudo code with the detailed
break down on how this GA process occurs. The crossover
method used was Simulated Binary crossover (SBX) which
converts each values to binary values to initiate the single
point crossovers. SBX incorporates a spread factor and makes
a random selection from a probability distribution.

III. SIMULATION SETUP

Using the ray-tracing based industry grade system-level sim-
ulator, we have created a cellular network scenario composed
of 12 macro base stations with 3 sectors each. However,
changes in parameters are concentrated only to 3 sectors as
shown in Fig. 4. The rest of the base stations are used to add
interference and thus capture realistic SINR. A total of 356
users are created which are randomly distributed around the
simulation area. To make it more realistic, these users have



different speeds as well as different services used such as VoIP
and high-speed internet. Table 1 shows the detailed parameter
settings for the simulation. Each base station is equipped with
two mobility parameters, CIO and HOM. For the base stations
of interest, the value of CIO and HOM ranges from [-10 to
10] dB and [0 to 10] dB respectively. For the rest of the base
stations, the value of these parameters remains constant. With
CIO having 21 possible values, 11 for HOM and considering
three BSs, we would have 213 × 113 (12,326,391) possible
COP combinations. However, we have observed that using
all this possible combination is not necessary as SINR values
change minutely. Therefore, we have decided to use CIO and
HOM values with step size of 2 to reduce the data size, that
is (113 × 63) possible combinations.

Fig. 4. Simulation Environment

In the simulator we defined the serving cell selection pro-
cess with respect to 3GPP standard specification in terms of
qualification, pre-selection and final selection.

1) Qualification: For cells to first be qualified as potential
serving cells the RSRP (Reference Signal Received Power)
received from the UE must be greater than or equal to the
cells’ minimum RSRP plus a threshold.

RTx
s ≥ TTx

s +Max(0, TTx
threshold) (6)

where RTx
s and TTx

s are the RSRP from the UE and cell’s min-
imum RSRP respectively while TTx

threshold is the cell selection
threshold.

2) Pre-Selection: Considering all the potential cells that
qualify with the requirements above, only the cell that has the
highest RSRP received by the UE is preselected as the serving
cell (S0).

3) Final Selection: Aside from the pre-selected serving cell,
any cell among the qualified cells which has the following
condition is considered as the best serving cell, that is the
highest RSRP plus Cell Individual Offset:

RTx(c) +O
Tx(c)

individual ≥ R
S0 +OS0

individual +MS0

HO (7)

Here RTx(c) and O
Tx(c)

individual are the received power and cell
individual offset of the candidate or target cell respectively,

OS0

individual is the cell individual offset of the serving cell,
RS0 is the received power of the serving cell and MS0

HO is
the handover margin. The pre-selected cell is considered the
best cell if candidate cell does not fulfill this criterion.

During the course of the simulation, the UEs will use the
cell association process described above in deciding which cell
to camp on. Each time the values of CIO and HOM changes
for the 3 BS, the SINR from all the users camp on these BS as
well as the users within the data gathering area are collected
and averaged.

TABLE I
PARAMETER SETTINGS FOR SIMULATION

System Parameters Value
No. of Macro Base Stations 12

No. of sectors per Base station 3
No. of BS for parameter settings 3

Carrier Frequency 2100MHz
Transmission Power 43dBm

Minimum RSRP -140dBm
Antenna Gain 18.5dBi

No. of users in simulation region 356
Path Loss model Ray Tracing

CIO range Max:10dB, Min:-10dB
Handover Margin range Max: 10dB, Min 0dB

IV. RESULTS AND ANALYSIS

Machine learning prediction performances are evaluated in
terms of Root Mean Square Error (RMSE) as the validation
function. Results shown in Fig. 5 indicate that RMSE ranges
from 1.1439 dB to 1.4742 dB which shows a good response to
the ML models. As expected, Linear Regression performed the
least because its limitations lies in matching data that is not
linear and predicting data that is not within the range of training
sets. CatBoost performs the best because it reduces any form of
overfitting and categorizes each attribute accurately. However,
it is worth noting that DNN will outperform its counterparts if
the entire 12 million plus data set was used. Another interesting
thing to note is the good performance of the ML models even
with 10 percent of training data. The average RMSE of all
model is 1.2994 dB showing that even with limited data, ML
predictions are still able to perform with good level of accuracy.
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In finding the optimal value of CIO-HOM combination that
maximizes SINR, we have evaluated two search techniques,
brute force and genetic algorithm. As shown in Fig. 6, both
techniques gave close values of maximum SINR. However, it
takes brute force 287,000 iterations, which is the same number
of samples, to get to an optimum solution. This shows that
for large data size, brute force method is computationally
inefficient considering the time it takes to search through the
entire data set. Meanwhile, GA takes considerably less amount
of iterations, about 500, to find the optimal solution. This fast
convergence of GA shows how it can be used efficiently on
these kind of problems. GA shows that for the three BSs, CIO
values of [-10, -8, 4] dB combined with HOM values of [10,
5, 9] dB will yield the maximum SINR.

Results in Fig. 7 show the efficiency of GA. Based from the
results, initial configuration of [0, 0, 0] dB for CIO and [0, 0, 0]
dB for HOM for the three BSs give SINR of 7.96 dB. However,
after 1 generation, which is equivalent to 100 iterations, SINR
of 9.95 dB is achieved while after 300 iterations, it almost
found the optimal combination. This shows that even with
less amount of iterations, GA can find SINR values much
faster than brute force approach. This efficiency depends on
the generation and population size which involves another
optimization operation that is out of scope of this work.
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CONCLUSION

In this paper, we present a machine learning based frame-
work to capture KPI behavior with changes in COPs and to find
the optimal combination of these COPs to maximize the KPI.
Using several machine learning techniques, we have predicted
the mean SINR of all users with different combinations of CIO
and HOM. Analysis shows that CatBoost performs the best
among all other techniques evaluated. Meanwhile, GA demon-
strates efficiency in finding the optimal CIO-HOM combination
that yields maximum mean SINR.

For future studies, we will consider the optimization of more
COPs with respect to multiple KPIs in a larger network scale
involving more base stations.
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