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Abstract—With highly heterogeneous application require-
ments, 6G and beyond cellular networks are expected to be
demand-driven, elastic, user-centric, and capable of supporting
multiple services. A redesign of the one-size-fits-all cellular
architecture is needed to support heterogeneous application
needs. This paper addresses this need by proposing an intelligent,
demand-driven, elastic user-centric cloud radio access network
(UCRAN) architecture capable of providing services to a diverse
set of use cases ranging from augmented/virtual reality to high-
speed rails to industrial robots to E-health applications, and
more. The proposed framework leverages deep reinforcement
learning to adjust the size of a user-centered virtual cell based on
each application’s heterogeneous throughput and latency require-
ments. Finally, numerical results are presented to validate the
convergence and network adaptability of the proposed approach
against the brute-force method.

Index Terms—User-centric, elasticity, demand-driven, deep
reinforcement learning, spectral and energy efficiency.

I. INTRODUCTION

A key feature of 6G and beyond networks will be ultra-
dense networks offering seamless coverage, very high through-
put, and ultra-low latency. Network operators are exploring
ultra-dense networks to meet the ever-growing demand for
throughput and latency envisioned for 6G and beyond users.
While researchers in both academia and industry agree that
network densification will enhance the coverage and capacity
of current cellular networks, it has its own complications [1].
By densifying the network, the average distance between users
and the interferring base stations reduces. This causes a shift
in pathloss exponent leading to a scenario where increase in
the interference from neighboring base stations overshadows
benefits of the decreased average distance from serving base
stations. Further, 6G communications are envisioned to cater
to a wide range of user services with assorted throughput and
latency requirements [2]. In order to meet this requirement,
there is a need for an elastic architecture that can tailor to
the needs of each service, as opposed to traditional one-size-
fits-all architecture. This, along with the interference-limited
nature of dense networks, has prompted a shift to a user-centric
network paradigm from traditional networks.

UCRAN’s ability to abate inter-cell interference and reduce
deployment/operational costs makes it the ideal architecture
for supporting user-centric services in dense cellular net-
works [3]. A typical UCRAN consists of a tier of low-

density large coverage control base station (CBS) underlaid
by a tier of high-density intermediate coverage switchable
data base stations (DBS). UCRAN introduces a new degree
of freedom that is elastic in nature, referred to as Service
Zone or S-zone in this paper. S-zone is defined as the size
of the user-centric virtual cell centered around scheduled user
equipment(s) (UEs). In each transmission time interval (TTI),
CBS activates the best DBS constituting a S-zone centered on
the scheduled UE while ensuring no overlap among S-zones.
With this concept, the macro-diversity gain is easily achieved
through the activation of the best DBS for a scheduled UE.

With user-centric services being considered as an essential
feature of future cellular communications, 6G in particular,
an elastic and demand-driven UCRAN is needed in which
UEs with various throughput and latency requirements are
assigned different S-zones. In this study, we present such an
elastic and demand-driven UCRAN model, detailed in Sec-
tion III. We formulate a multi-objective optimization problem
to maximize important KPIs such as area spectral efficiency,
network energy efficiency, user service rate, and throughput
satisfaction. The S-zone size serves as a control parameter to
form a Pareto-optimal trade-off among these KPIs. The core
research objective of this work is to develop a solution that can
dynamically solve this multi-objective optimization problem
in UCRAN to achieve a Pareto-optimal solution in real-time
based on changes in the varying application demands and user
mobility. This paper studies the deep reinforcement learning
approach owing to its ability to adapt to dynamic environments
to determine the optimal S-zone size for each QoS category
intelligently so that network KPIs are maximized. The contri-
butions of this paper are summarized as follows.

• An architecture for demand-driven elastic user-centric
communication is proposed with the aim of providing
on-demand services to a diverse set of user applications.

• Considering the heterogeneous user requirements in fu-
ture cellular communications, a multi-objective problem
is formulated to optimize KPIs as a function of S-zone
size for respective QoS categories.

• Given the non-stationarity of user application demands,
we propose a deep reinforcement learning framework to
accurately learn the mapping of environment state and
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Fig. 1: Dynamic S-zone UCRAN architecture with M different
S-zone region of radius Rc for scheduled UE’s.

action instilling intelligence in the demand-driven elastic
user-centric architecture.

The remainder of the paper is organized as follows. We discuss
the related work in Section II. The system model is discussed
in Section III. A multi-objective optimization problem is
formulated in Section IV. The details of the proposed approach
and the results of the numerical analysis are presented in
Section V and Section VI, respectively. Finally, the paper is
concluded in Section VII.

II. RELATED WORK

In recent works, the impact of S-zone size in UCRAN is
investigated using analytical models for both sub 6 Gigahertz
and millimeter frequency bands [3]–[5]. For instance, Hashmi
et. al. [3] using a statistical framework showed that there exists
an optimal user-centric virtual cell size at which both the area
spectral efficiency and energy efficiency can be maximized in
UCRAN. The authors also noted that this user-centric virtual
cell size depends on both DBS and user density variations,
thus requiring adaptation with variations in these parameters.
In an analytical study, we studied the interaction between
spectral and energy efficiencies in a coordinated multipoint-
enabled UCRAN architecture as the size of the UCRAN’s
virtual cell and the density of its DBSs is changed [5].
Humadi et. al. [4] have proposed a user-centric model for com-
bining base stations for millimeter-wave networks and used
stochastic geometry to determine the coverage probability and
optimal area spectral efficiency performance. They propose
a framework for optimizing the clustering parameter, leading
to an increase in area spectral efficiency. There is insightful
information available in the existing literature on UCRAN,
but these methods use an analytical modeling approach that
does not study the impact of control parameters (S-zone)
with spatiotemporal changes in wireless networks, such as
mobility and dynamic user application requirements. Owing
to the cellular network’s complexity, we propose a learning
framework based on deep reinforcement learning to accurately
learn the complex mapping of environment state and action in
a demand-driven elastic user-centric architecture.

III. SYSTEM MODEL
A. UCRAN Architecture

Fig. 1 provides a graphical illustration of a UCRAN network
with virtual user-centric cell boundaries for UEs belonging
to different QoS categories. These categories are classified
according to the UEs’ latency and throughput requirements
as illustrated in Fig. 1. The DBSs are connected to the pool of
base band units (BBUs) via flexible front haul (an optical fiber
network) [6], [7]. Most of the signal processing at baseband
level is delegated to the BBUs.

A critical design parameter in UCRAN is the size of the
S-zone, which is determined by the radius of the circular disk
around the UE. In the proposed model, the DBSs falling within
the S-zone of a UE are only allowed to associate with that
UE in a given TTI. Increasing the S-zone size ensures (i)
larger distances between a UE and interfering DBSs resulting
in high link-level SINR (hence, link-level high throughput
and spectral efficiency); (ii) yields high macro diversity gain
through selection among the larger number of DBSs in the
S-zone and (iii) offers high energy efficiency as large S-zones
keep more DBSs deactivated as compared to small S-zones.
However, larger S-zones also yield low user scheduling ratio
and low spectrum reuse resulting in negative impact on the
system-level capacity. By selectively turning on DBSs in S-
zones instead of keeping them always on helps reduce the
burden on the network for mobility management, as activating
a DBS with the maximum channel gain in each TTI within
the S-zone region can provide service to UE regardless of
their mobility. Given these insights, the S-zone size serves as
a controlling parameter that yields an ideal tradeoff between
area spectral efficiency, energy efficiency, and other system-
level KPIs.
B. UE Scheduling Algorithm

In this work, we propose a scheduling mechanism to meet
the heterogeneous latency requirement of UEs in UCRAN.
Latency requirements of UEs are drawn from a uniform
distribution and rounded off to specified bins of latency
requirements corresponding to the QoS categories. Each UE
x is marked with platencyx ∼ U(a, b) by the BBU where a and
b are measured in milliseconds (ms) and are determined by
the minimum and maximum latency of the considered QoS
categories. The lower the value of mark platencyx ∼ U(a, b),
the higher will be the scheduling priority. The BBU based on
these scheduling priorities schedules a UE x if and if only the
scheduling priority of UE x is highest in the neighborhood
which is characterized by the S-zone size for a specific QoS
category. This means that within a circle of radius centered at
UE x, no other UE has a higher priority than UE x. Once the
UE is scheduled, a single DBS providing the highest channel
gain within the S-zone of the respective UE is activated by
the BBU to serve the UE.
C. Network & Channel Model

A downlink of a two-tier ultra-dense network is considered
consisting of a CBS and DBSs operating on sub 6 GHz
frequencies. The DBSs and UEs are randomly distributed
following two independent and homogeneous Poisson point
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processes ΠDBS and ΠUE with intensities λDBS and λUE

respectively. The location of each UE acts as a centering point
for the user-centric virtual cell (S-zone) which bounds the UE
to be associated with DBS only within the S-zone region.
This work defines the S-zone as a disk of radius Rc, where
c ∈ C is a QoS category present in the network model. The
communication channel between an arbitrary user x ∈ ΠUE

and activated DBS i ∈ Π
′

DBS is modeled to experience both
large-scale and small-scale fading given by hl−PLE , where
h is an exponential random distribution with unit mean, lxi
represents the propagation distance between x and i, PLE < 2
is the pathloss exponent, and Π

′

DBS is the Poisson point
process of activated DBSs. UE and DBS are equipped with a
single antenna and the transmission power of DBS is assumed
to be equal. The scheduled user SINR (Γx) is given as:

Γx =
hxil

−PLE
xi∑

j∈Π′
DBS

hxj l
−PLE
xj + no

, (1)

where i ̸= j and no denotes the additive white Gaussian noise.
IV. PROBLEM FORMULATION

This section characterizes the KPIs, followed by the formu-
lation of a multi-objective optimization problem.
A. Characterizing Key Performance Indicators

This work measures system performance in terms of area
spectral efficiency, network energy efficiency, user service rate,
and throughput satisfaction as the desired set of KPIs. We
selected these KPIs to reflect that the objective is to meet
throughput and latency requirements while maximizing area
spectral efficiency and network energy efficiency.
1) Area Spectral Efficiency

The area spectral efficiency refers to the amount of infor-
mation that can be transmitted from a DBS per unit bandwidth
channel per unit area to a UE, which can be defined as follows
for each QoS category c:

Ac =

∑
x∈Nc

log2(1 + Γx)

Å
, (2)

where Nc is the set of UEs belonging to QoS category c, and
Å is the target area considered in the simulations model.
2) Energy Efficiency

According to [3], [8], [9], the network-wide energy effi-
ciency is defined as the ratio of area spectral efficiency and
total power consumed for all scheduled UE’s. The power con-
sumption model in this paper is inspired by project Earth [10],
in that it represents the power consumption of CBS and DBSs
as a linear combination of fixed power and load-dependent
power consumption components. The total power consumption
can be mathematically calculated as follows:

P = λDBSPf+λ′
DBS∆DBSPDBS+λ′

UE(∆UEPUE+Pdisc),
(3)

where λDBS is the density of all deployed DBSs, λ′
DBS

is the density of activated DBSs, λ′
UE is the density of

scheduled UEs, Pf is the fixed DBS power consumption
required for DBS to operate in listening mode, PDBS is
the DBS transmission power, ∆DBS is the radio frequency

component power at DBS, PUE is the UE transmission power,
∆UE is the radio frequency component power at UE, Pdisc

is the power required at UE for discovery of the DBS with
the highest channel gain. The typical values of these variables
are summarized in [3]. The energy efficiency therefore can be
given as:

E =

Å ×
∑
c∈C

Ac

P
. (4)

3) UE Service Rate
The UEs’ heterogeneous latency requirements necessitate

scheduling more UEs within each TTI while meeting UE
quality of experience requirements. The mean UE service rate
for any QoS category c can be calculated as:

Uc =
λservice
UEc

λUEc

, (5)

where λUEc and λservice
UEc

are the densities of all UEs and
whose minimum throughput requirement is met, respectively.
4) Throughput Satisfaction

There can be a wide variety of throughput requirements
for UEs belonging to different QoS categories. Operators
must satisfy the minimum throughput requirements of each
QoS category as part of their objective. Moreover, network
operators must ensure that they are utilizing their resources
efficiently by avoiding scenarios in which excess throughput
is allocated to a few UEs (or categories of UEs) while other
UEs’ minimum requirements are not met. For this reason,
this work uses the difference between required and obtained
throughput, a metric we define as throughput satisfaction, to
measure system performance. Throughput satisfaction for a
specific QoS category c is given as:

Tc =

( ∏
x∈Nc

∣∣tp⋆x − tp♢x
∣∣) 1

|Nc|

, (6)

where tp⋆x and tp♢x are the obtained and required throughput
for an arbitrary UE x respectively.
5) Multi-objective Optimization Problem Formulation

Hitherto, the above definition of KPIs demonstrate the need
for optimizing S-zone size of QoS categories to maximize
area spectral efficiency, energy efficiency, UE service rate
and throughput satisfaction individually. The challenge from a
network operator’s perspective is that all these KPIs should be
optimized simultaneously, leading to a Pareto-optimal tradeoff
between them. To account for this tradeoff, this study defines
the multi-objective optimization problem as follows:

max
Rc

( ∑
c∈C

A′
c

)α( ∑
c∈C

U′
c

)β(
E′
)1−α−β

∑
c∈C

T′
c

s.t. Rmin ≤ Rc ≤ Rmax,

(7)

where 0 ≤ α, β ≤ 1, α+β ≤ 1, A′
c is area spectral efficiency

normalized between [0, 1], E′ is energy efficiency normalized
between [0, 1], U′

c is UE service rate normalized between
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Fig. 2: Block diagram of the proposed framework.

[0, 1], T′
c is throughout satisfaction normalized between [1, 2],

Rmin and Rmax are the minimum and maximum allowable
size for S-zone of QoS categories. The rationale behind the
proposed objective function formulation is to optimize holistic
system-level performance by combining network operators’
four most important and common KPIs of interest. However,
these KPIs have different scales/units. This issue makes com-
bining the multiple KPIs in a single objective function far
from a straightforward problem. In this work, we address this
problem by normalizing each KPI value with its minimum
and maximum value. These minimum and maximum KPI
values are determined through pseudo brute force method. The
pseudo brute force method sweeps the solution space (with a
pre-defined step size) in numerous independent runs. Given the
step sizes are large enough to explore the possible extrema in
the search space within an affordable computational effort, this
pseudo brute force method gives values of KPIs that can be
taken as approximation of minimum and maximum values for
the normalization purposes [11].

To be reflective of the real goals of the system, Eq. (7)
is designed such that the normalized values of area spectral
efficiency (between 0 and 1), energy efficiency (between 0
and 1), and user service rate (between 0 and 1) are multiplied
in the numerator to jointly maximize these KPIs while the
normalized value of throughput gap (between 1 and 2) is in-
cluded in the denominator to minimize the difference between
throughput obtained and achieved by the users. The problem
in Eq. (7) is a mixed-integer nonlinear programming problem
with complexity of the order of O

(
(Rmax − Rmin + 1)|C|).

It is computationally difficult to achieve an optimal solution
for a non-convex multi-objective problem in a dynamically
changing network, which makes its application in real-time
optimization systems impossible. To this end, this paper pro-
poses a deep reinforcement learning-based framework that is
capable of determining the optimal S-zone size for all QoS
categories with the objective of maximizing network KPIs.

V. PROPOSED FRAMEWORK
This section discusses the design of the proposed frame-

work. A BBU implements the optimization agent, which
collects the network parameters and specifies the S-zone size
for each QoS category.
A. State Space

• The average SINR of each QoS category is impacted
by the change in S-zone size of QoS categories as
divulged in Eq. (1), which has an impact on the area
spectral efficiency, energy efficiency, user service rate,

and throughput satisfaction. The average SINR of each
QoS category can be given as:

φc =

∑
x∈Nc

Γx

|Nc|
,∀c ∈ C. (8)

• The UE service rate of each QoS category given in Eq. (5)
determines the ratio of UEs from each QoS category that
gets served, thus directly impacting the learning objective.

• The throughput satisfaction of each QoS category given
in Eq. (6) relates to how well the achieved throughput
compares to the throughput demanded by UEs in each
QoS category. The high value of throughput satisfac-
tion indicates a network overshooting or undershooting
throughput, which requires some adjustment of S-zones.

In conjunction, the state vector of the proposed framework
with the cardinality of 3|C| is defined as:

st = {φt
1, ..., φ

t
|C|,U

t
1, ...,U

t
|C|,T

t
1, ...,T

t
|C|}. (9)

B. Action Space
For each QoS category, the action is to either increase or

decrease the S-zone radius by d unit (measured in meters) or to
keep it the same, that is, ac = {−d, 0, d}. Having a centralized
agent responsible for adjusting the S-zone size for all QoS
categories in the network will result in a combined action set.
The incremental action space has been selected to circumvent
the combinatorically large action space that can be obtained
by considering each combination of the QoS categories as an
individual action, affecting the learning and convergence of
the deep reinforcement learning agent greatly. Even with the
incremental action space, the size of combined action space is
3|C| for all QoS categories, which grows exponentially with
QoS categories.

Inspired by [12] to reduce deep reinforcement learning’s
large action space, the action space of each QoS category is
considered as a separate action branch controlling an individ-
ual degree of freedom for each QoS category. By allowing
individual action dimensions to operate independently, this
approach ensures a linear increase in the size of combined
action space with the number of QoS categories, of the order
of 2|C|+1. For example, if |C| = 2, the action space includes
increasing/decreasing R1 by d meters, increasing/decreasing
R2 by d meters or keeping R1 and R2 unchanged. In a similar
way, the combined action space dimensionality reduction
approach is scalable to networks with a greater number of
QoS categories.
C. Reward Function

The reward function in the proposed framework primarily
focuses on two aspects for the S-zone size estimation in a
dynamic environment: 1) finding the optimal trade-off between
system-wide KPIs formulated as a multi-objective function
given in Eq. (7), and 2) penalizing the agent for failure to
satisfy the S-zone radius constraint given in Eq. (7). The utility
function (ut) at each TTI t is equivalent to the objective func-
tion given in Eq. (7). Subsequently, the reward is calculated
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TABLE I: Network simulation and training parameters.

Symbol Parameter Name Parameter Value
λUE , λDBS UE & DBS average density 103\km2

PLE Path-loss exponent 3
Rmin Minimum S-zone size 10m
Rmax Maximum S-zone size 80m
Rinit Initial S-zone for each QoS category (Rmax +Rmin)/2m
d Action space stepsize 3m

α, β Weightage parameters in Eq. (7) 0.4, 0.4
Z Penalty for wrong action -1

Fig. 3: Comparison of user-centric (UC-RAN) and non-user-centric (C-RAN) networks.

as follows:

rt =

{
eζ(u

t−1) if constraint given in Eq. (7) is met.
Z otherwise,

(10)

where ζ > 1 in the exponential term is used to amplify
the difference between values of the utility function and
−1 < Z < 0 is a negative constant to punish the agent for
choosing an S-zone size that is not within the specified bounds
of Rmin and Rmax. The exponential shaping of the reward
against utility values allows the deep reinforcement learning
agent to give a much higher reward when it achieves higher
utility values and much lesser when it achieves lesser or mid-
range utility values.

D. Agent Training & Testing Procedure

The schematic diagram of the proposed framework is shown
in Fig. 2. As part of the training process, the agent stores
the experience tuple {st,at, rt, st+1} in the experience pool
and updates the deep neural network weights by applying
the stochastic gradient descent algorithm to a minibatch of
data at each epoch t (equivalent to a TTI). In every episode,
consisting of T epochs/TTIs, the agent is initialized at Rinit

for all QoS categories, and the environment is initialized with
different random seeds to generate different mobility patterns.
The deep neural network includes four fully connected layers,
and three rectified linear unit activation functions with input
layer neurons equal to the number of state variables 3|C| and
output layer equivalent to the number of actions 2|C|+ 1.

VI. EXPERIMENTAL EVALUATION

This section presents the performance of proposed frame-
work with system model presented in Section III. The target
coverage area of CBS is 1 square kilometer. The UEs and
DBSs are distributed through an homogeneous Poisson point
processes within the CBS coverage region with densities of
103\km2. The minimum and maximum S-zone size consid-
ered in this work are 10 meters and 80 meters, respectively
with the action space step size of 3 meters. The number of
maximum epochs / TTIs (T ) in each training and evaluation
episode is set to 1000, where each TTI’s duration is set to 1
ms. The weight parameters α and β in Eq. (7) are each set to
0.4. The set of the network parameters are shown in Table I.
A. Comparison of User-centric with Non-user-centric archi-

tecture
To compare the performance of the proposed user-centric

approach with a non-user-centric approach, we simulate a
Cloud Radio Access Network (C-RAN) model which consid-
ers similar assumptions as taken for a user-centric architecture
to ensure a fair comparison between the two architectures.
These assumptions are: (i) the DBSs are deployed in high
density, (ii) each UE is allocated the full bandwidth of the
system, (iii) there is a one-to-one association between UE and
DBS, and (iv) the UE is associated with a DBS providing
the maximum channel gain. With these assumptions, the only
contrasting factor in C-RAN and UC-RAN architectures is
the S-zone parameter. Fig. 3 shows the average SINR and
number of scheduled UEs plots for varying UE densities. It
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Fig. 4: Convergence of the average episodic reward values for
varying number of QoS categories.

can be observed that the average SINR in the case of C-RAN
falls drastically with the increase in the density of UEs in the
network. At the same time, UC-RAN architecture with the
additional degree of freedom (S-zone size) is able to achieve
much higher average SINRs at the cost of lesser scheduled
UEs. The S-zone size controls the separation between the
scheduled UEs, impacting the average SINR and the number
of scheduled UEs. From Fig. 3, it can be hypothesized that
the C-RAN (traditional Heterogeneous network) architecture
will not be able to perform better in a network with dense
DBS deployment, which is envisaged for 6G and beyond
networks. On the other hand, the UC-RAN architecture can
provide an effective solution to this problem by incorporating
an additional degree of freedom (S-zone size). Note that the
C-RAN architecture is the design of traditional Heterogeneous
network adopted in current cellular systems architecture.
B. Convergence Comparison for Varying Number of QoS

Categories
The convergence of the proposed framework with dynam-

icity in the network due to heterogeneous user application
demands is shown for different numbers of QoS categories
in Fig. 4. The value of the utility function is normalized with
the upper and lower limits, determined by the pseudo brute-
force solution so that the reward function can have a maximum
and minimum value of 1 and -1, respectively. For each of
the considered cases in Fig. 4, the learning converges towards
higher reward function values after a certain amount of training
episodes. The greater the number of QoS categories, the
longer it takes to converge due to a larger state space, action
space, and search space, requiring more TTIs to explore the
environment. Additionally, as the number of QoS categories
increases, the reward function tends to converge to a lower
reward value. This is mainly due to the expansion of S-zone
space and the increase in the minimum required number of
TTIs to reach to optimal S-zone (R∗

c ) from the initial S-zone
(Rinit

c ) for each QoS category.
VII. CONCLUSION

In this paper, we proposed a deep reinforcement learning-
based user-centric RAN optimization framework under dy-

namic user application demands. Unlike previous cellular net-
work approaches, the proposed framework employs a concept
of elasticity within user-centric systems that employ non-
uniform virtual cells (also called S-zones) for different QoS
categories. The proposed framework introduces a less complex
approach than brute-force technique by accurately learning
the mapping of environmental conditions to S-zone size of
corresponding QoS categories. In general, this research aims
to introduce intelligence into user-centric elastic networks
to accommodate user applications’ non-uniform throughput
and latency requirements. With the proposed framework, the
paradigm of traditional cellular networks could be transformed
into demand-driven, elastic, user-centric systems in future 6G
and beyond networks. The complete version of this work has
been published as a transaction paper [13].
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