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Abstract—In the rapidly evolving landscape of wireless net-
works, accurate and resilient propagation models are essential to
achieve optimal performance and reliability. This paper presents
a novel domain-aware framework for interpretable and resilient
propagation models. The proposed approach represents an inno-
vative architecture framework that is not only interpretable but
can also deal with training data size scarcity. Bridges domain
knowledge with machine learning. The proposed approach lever-
ages a combination of domain expertise, analytical modeling, and
customized neural networks to construct interpretable models that
excel in both identical distribution and non-identical distribution
test-train dataset scenarios. Through a comprehensive analysis, we
demonstrate the proposed approach’s ability to adapt and refine
models in response to real-world variations, ensuring consistent,
high-quality performance. The proposed framework not only
enhances our understanding of complex systems but also paves
the way for the creation of digital twins for wireless networks.
Furthermore, the root mean square error of the performance
metric for the proposed approach is reported as 6.97 dB, further
confirming its effectiveness in accurately predicting the results of
wireless propagation.

Index Terms—Digital Twins, Neural Networks, Radio Propaga-
tion Modeling, Resilience Analysis.

I. INTRODUCTION

In the rapidly advancing landscape of wireless networks, the
integration of digital twins (DT) emerges as the cornerstone of
Industry 4.0, particularly in the context of emerging cellular
networks [1]. A DT, serving as a dynamic software replica
of the mobile network, proves instrumental in continuous
prototyping, testing, and optimization. Its significance becomes
pronounced in its ability to design and optimize operations
precisely, thereby enhancing overall network efficiency. Beyond
simulation, DT acts as a pivotal staging environment for testing
AI algorithms before they get deployed in the production
environment, ensuring the robustness of these algorithms before
deployment in scenarios with limited real network data.

Integral to the successful implementation of a DT for
wireless networks is the development of propagation models
that exhibit characteristics such as being interpretable and
resilient and seamlessly integrating with the physical wireless
network [2]. Traditional propagation models, which encompass

empirical, deterministic, and stochastic approaches, have histor-
ically struggled to meet these characteristics. Ray-tracing-based
simulations, although providing acceptable results, fall short in
being computationally efficient, particularly when considering
the dynamic nature of wireless systems. On the contrary,
computationally efficient approaches such as COST-Hata and
ITU-R P.453-15, may compromise realistic results [3]. Recog-
nizing the limitations inherent in these traditional approaches,
there is growing interest in resilient and adaptive propagation
models. This has led to the emergence of data-driven machine
learning (ML) techniques and deep neural networks (DNNs).
Although ML-based approaches present promising solutions,
they introduce a new set of challenges. Challenges in ML-based
approaches include the scarcity, incompleteness, and limited
accessibility of crucial data to model system behavior across
various domains. The black-box nature of conventional ML
methods poses interpretability challenges, especially in domains
where transparent decision-making is essential. Additionally,
the complex mathematical relationships that govern the inter-
action between the configuration and optimization parameters
(COP) and the key performance indicators (KPIs) in wireless
networks add another layer of complexity.

This paper navigates through the intricacies of propagation
modeling, shedding light on the shortcomings of traditional
methodologies, and delving into the promises and challenges
associated with ML-based techniques. We introduce a domain-
aware framework for interpretable and resilient propagation
models, as a transformative solution poised to bridge the
interpretability gap and contribute to the realization of robust
DTs for wireless networks. This ensures the robustness of AI
algorithms before deployment, particularly in scenarios with
limited real network data.

A. Related Works

In the field of ML to model the propagation of wireless net-
works and the prediction of path loss, various studies have made
notable contributions. For example, [3] introduces a path loss
prediction model that surpasses traditional methods in accuracy
and efficiency but lacks a discussion of generalizability and



real-world challenges. The work in [4] develops an ML-based
propagation model for the prediction of the received power
of the reference signal (RSRP), considering factors such as
the layout of the building. Limitations include the need for
diverse validation and the lack of discussion of interpretability
in real-world scenarios. In [5], a combination prediction model
for very high-frequency radio wave propagation is presented,
outperforming existing models in accuracy and robustness.
However, interpretability is not discussed, with a focus on
improving accuracy and robustness.

The authors in [6] propose an ML-based approach for the
prediction of received signal strength and the evaluation of
coverage, highlighting the cost-effectiveness of mobile network
planning. However, the paper lacks a discussion of inter-
pretability and challenges related to data distribution or scarcity.
Although [7] underscores the importance of interpretability,
it lacks a comprehensive discussion of challenges related to
predictor coalitions and general model interpretability. In [8],
an interpretable NN configures software-defined meta-surface
tiles, providing the use of economic resources. Limitations in-
clude interpretability, data scarcity, and distribution challenges.
The model in [9] predicts wireless coverage using crowd-
sourced data and the SHapley Additive exPlanations (SHAP)
framework for improved interpretability. Limitations include
potential data biases that affect generalizability. Data-driven
ML faces the challenges highlighted in [10], including the
demand for large datasets and issues such as data scarcity, un-
representative characteristics, and generalizability of the model.

Persistent challenges include accurate path loss estimation
in diverse scenarios, real-world implementation hurdles, and
the interpretability of ML models. Scarcity, unrepresentative,
and unbalanced data of the real wireless network contribute
to biased models struggling with generalizability, known as
distribution shift [11]. The distribution shift compromises the
generalizability of the model, emphasizing the need for ro-
bust modeling techniques. Understanding these challenges is
crucial for resilient solutions in the modeling of propagation
of emerging wireless networks. Currently, there is a notable
gap in research that focuses on interpretable and resilient
propagation modeling for these networks, especially using
tabular data-driven approaches. In summary, current works on
propagation modeling fail to address realistic challenges such
as distribution shift, data scarcity, and model interpretability.

B. Contributions

In this challenging context, our aim is to fill the identified
literature gap. We present a novel, domain-aware, interpretable,
and resilient ML model framework designed for the complex-
ities of real-world wireless networks, addressing issues such
as model insights, sparsity and scarcity of training data, and
unrepresentative distribution shifts in test data. The primary
contributions can be outlined as follows:

• A novel domain-aware propagation modeling framework
is introduced for predicting the RSRP. Unlike traditional
models, our framework incorporates domain knowledge to

construct an initial mathematical model, making it more
effective in capturing complex environments.

• A framework is designed that is interpretable, allowing
users to understand how the model arrives at its predic-
tions. We demonstrate how our framework shows remark-
able resilience, maintaining its predictive accuracy even
when faced with test data distributions that are entirely
unknown and differ from the training data distributions.
This resilience is crucial in practical applications where
data variability is common.

• The robustness of our proposed framework is demon-
strated. Unlike data-driven ML models that often suf-
fer from reduced performance as training data becomes
sparse, proposed approach exhibits robustness to variations
in the amount of training data. This robustness ensures
reliable predictions even when data availability is limited.

II. PROPOSED FRAMEWORK:
DOMAIN-KNOWLEDGE-BASED MODEL CONSTRUCTION,

TRAINING, AND TESTING

A. A Brief Overview of Various Modules in the Framework

The proposed approach is a synergy of domain knowledge,
analytical modeling, and ML, as shown in Fig. 1. The initial
phase, Data Generation (M1 in Fig. 1), involves creating raw
data for model training and testing, derived from network sim-
ulators or directly from network operators. Following this, the
Feature Engineering module (M2 in Fig. 1) processes this raw
data into engineered data by selecting key network topological
and geographical parameters, such as antenna configurations
(tilt, azimuth, height) and terrain features (ground and building
heights). Concurrently, the Model Construction module (M3 in
Fig. 1) develops a custom NN architecture, leveraging domain
knowledge and data insights. This process begins with the
establishment of a foundational COP-KPI relationship, leading
to an analytical equation that guides the design of our NN
model for KPI predictions. This equation informs the selection
of observable variables, mathematical operations, activation
functions, and network layers tailored to our model. Subse-
quently, in the Model Training module (M4 in Fig. 1), the NN
undergoes training at various levels of data scarcity. The final
step, Model Resilience Testing, critically evaluates the efficacy
of the trained model on test data, evaluating performance across
both identical distribution (ID) and non-identical distribution
(NID) scenarios.

B. Data Collection, Feature Engineering (M1-M2 in Fig. 1)

The raw dataset encompasses essential information related
to signal propagation and is organized into three primary
categories: (1) base station (BS) site-specific details, including
location and antenna specifications; (2) geographic information,
including terrain, building structures, and land cover data;
and (3) UE measurements, including RSSI values, location
coordinates, and network-specific details. Using domain knowl-
edge, we employ feature engineering in our raw dataset to
systematically transform the raw site-specific, geographic, and
UE data of the BS into features. These features comprise
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Fig. 1: The proposed framework for data-driven custom neural architecture model. In addition to the Data Generation (M1) and Feature
Engineering (M2) modules, Model Construction, Training, and Resilience Testing are summarized in M3, M4, and M5, respectively.

distances, clutter information, building penetrations, diffraction
points, and angular separations between BS and UE.

C. Construction of Proposed Neural Architecture (M3)

1) Domain Knowledge based Analytical Equation: From
the domain knowledge of wireless communication, we can
illustrate the proposed approach using the simplest indicator
of coverage, RSRP, this can be written as follows;

Pr[dBm] = Pt − PL+G− L+X, (1)

where, Pr is the received power, Pt refers to the transmit power
of the BS, PL refers to the path loss, G represents antenna
gain, L represents attenuation caused by clutter (building,
trees, etc), X includes additional losses from BS cable and
equipment. To calculate the PL for (1), we utilize the path loss
model for the 3D UMa scenario from the WINNER II channel
models of IST-4 − 027756 [12], which shows that PL is the
maximum of the path losses in the LoS and NLoS scenarios,
that is, PL[dB] = max (PLLOS , PLNLOS). These scenarios
are functions of distance d, carrier frequency fc, BS height,
hbs, UE height, hue,

PLLOS(d, fc, hbs, hue) = 40 log10(d) + 6 log10 (fc/5)

− 14 log10 (hbs) + 13.47− 14 log10 (hue) . (2a)

For NLOS, the path loss is a function of all the above
parameters except UE height, as shown below,

PLNLOS(d, hbs, fc) = log10(d)[44.9− 6.55 log10 (hbs)]

+ 5.83 log10 (hbs) + 23 log10 (fc/5) + 34.46. (2b)

According to the 3GPP recommendation [13] the antenna gain
G for (1), is the product of maximum antenna gain, Gmax, and
antenna attenuation, Aatt, i.e., G = Gmax · Aatt. The Gmax

is dependent on antenna efficiency ζ, horizontal and vertical
beamwidths Bh, Bv , and related to antenna directivity as.

Gmax (Bh, Bv, ζ) = ζD = ζ
4π

BhBv
. (3)

The antenna attenuation is written as follows;

Aatt (Bh, Bv, ϕu, ϕtilt, θu, θazi, λh, λv, Ah, Av) [dB] =

λv min[12(
ϕu − ϕtilt

Bv
)2, Av] + λh min[12(

θu − θazi
Bh

)2, Ah]. (4)

Where, Bh and Bv represent the horizontal and vertical half-
power beam widths. θu, θazi represents the azimuth angles,
whereas, ϕu, ϕtilt, represents the tilt angles for BS and UE.
λh and λv represent the weighting factors for the beam pat-
tern in both directions. The vertical and horizontal maximum
attenuation for the sides and back of the bore sight is indicated
by Ah, and Av , respectively. Henceforth, placing (2a), (2b),
(3), and (4) back into (1) the complete analytical equation for
calculating the RSRP coverage for the UE as a function of
several COPs can be written as in (5).

2) Formulating Custom NN Using Analytical Equations:
After deriving the analytical equation, i.e. (5), our focus
shifts towards creating the architecture of the NN. In contrast
to conventional DNN architectural methodologies, where a
sequential model is incrementally expanded with layers and
specified neuron counts, often utilizing ReLU as the default
activation function, our approach takes a distinctive path. We
design the architecture based on an acquired domain-based
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− L+X + 47.93 (5)

analytical equation, where every aspect, from selecting input
variables to determining the activation function, is guided by
a profound understanding of the underlying system equation.
This innovative approach involves constructing the NN directly
from the analytical equation, representing a departure from
typical methodologies. While current approaches introduce
domain knowledge by embedding loss terms in the form of
approximation constraints within the baseline DNN structure,
our proposed methodology is inherently distinct. By adopting
this approach, we aim to offer users a transparent insight
into the internal workings of the NN—a departure from the
prevailing ‘black box’ nature of DNN.

The first step involves identifying the input variables derived
from the analytical (5), which include ζ, Av , Ah, ϕu, ϕtilt,
θu, θazi, Bv , Bh, hbs, hue, f , d, λh, and λv . The second
step entails recognizing the mathematical relationships, rep-
resented by various operators, that connect these variables.
These operators encompass addition, subtraction, multiplica-
tion, logarithmic functions, division, squaring, minimum, and
maximum. In the third step, custom-written activation functions
are developed for each layer to align with the desired output
type. To implement this, the Keras API is used to construct
the different layers of the NN model. Keras facilitates the
incorporation of various mathematical operations, including
those identified in the second step.

D. Model Training and Resilience Testing (M4, M5)

In this module, we outline our methodology for evaluating
and comparing the performance of the proposed approach
with the conventional method. We begin by constructing a
propagation modeling training dataset, which incorporates a
diverse range of geographic and network features, as detailed
in section II-B. As mentioned previously in section I, acquir-
ing training data for experimental or optimization purposes
in wireless communication systems often presents multiple
challenges. Network engineers often encounter challenges due
to the scarcity of training data, resulting in limited variability.
This scarcity can compromise the quality of the training data
and consequently impact the effectiveness of model training.
Recognizing these practical impediments, our analysis aims to
systematically evaluate both the proposed and conventional ap-
proaches across multiple sets of training dataset sizes. Through
this analysis, we seek to gain insights into the performance
characteristics of each approach under varying data constraints.
We refer to them as data scarcity challenges.

In addition, model resilience testing is conducted in two
distinct ways. Firstly, the conventional ID approach involves
maintaining the distribution of test data as identical to that of
the training data. In the second approach, we introduce various
NID test scenarios for resilience analysis. For this purpose, we

use SHAP sensitivity analysis and identify the most important
features using the LightGBM model—a widely acknowledged
model in propagation model literature for SHAP analysis. The
top three influential features, ranked in descending order, are
identified as follows: F1 : “Distance”, F2 : “UE Tilt”, and
F3 : “BS Azimuth”. Subsequently, the distributions of these
features are discretized into a histogram of bin widths as 12
& 18. NID test scenarios are created by selectively sampling
train data from either the upper or lower regions/bins of the
histogram. The objective of this testing is to verify that the
proposed model exhibits resilience in handling unrepresentative
and imbalanced datasets. The purpose of this selective sampling
is to highlight the kind of experience that network operators
face when collecting network data required for planning and
optimization purposes. One main challenge, as mentioned in
[10], is the sparsity of diverse datasets for training and test-
ing models in real wireless networks. Existing data is often
limited and skewed due to factors such as location density
and environmental variations [14], [15]. For instance, urban
areas contribute more data, creating a bias towards urban signal
patterns in models. As mentioned in section I-A this bias leads
to distribution shift in data.

III. SIMULATION SETUP AND PERFORMANCE EVALUATION

A. Experimental Setup

We have utilized Atoll [16], a 3D ray tracing-based network
planning tool, to model the network environment that covers
an area of 3.8 square kilometers with 10 eNodeB macrocell in
the center of Brussels, Belgium. We divide the area into bins
and calculate the RSRP values for each bin by averaging the
RSRP values of the users in the area. Table I summarizes the
key simulation parameters adopted for this study.

Table I: Key Simulation Parameters Values

Parameter Value/Type

Path loss model Aster propagation
(ray-tracing)

eNodeB height [m] 28-37
Antenna tilt [◦] 0-6

Antenna azimuth [◦] 41-319
Antenna gain 18.3 dBi

Horizontal half power beamwidth 65◦

Vertical half power beamwidth 9◦

eNodeB max transmit power [dBm] 43

B. Model RMSE performance against Training Data Scarcity

As detailed in section II-D, a key focus of this work is
to assess and compare model performance under extremely
limited training datasets. In this regard, We evaluated and
compared the performance of the RMSE of the baseline and
the proposed approach in different sizes of training data, as



illustrated in the spider diagram in Fig. 2. The baseline DNN
architecture used for the comparison consists of a sequential
model with several layers. The first layer, with 14 neurons,
takes input features from the training data and applies the
rectified linear unit (ReLU) activation function. Subsequently,
two hidden layers with 64 neurons each follow, both using
the ReLU activation function. Another hidden layer with 128
neurons and ReLU activation is added before the final layer,
which consists of a single neuron with linear activation.

The analysis begins with a data set of sizes 40, 000, various
percentages of this size are considered to create cases with
varying scarcity levels. RMSE values are represented by con-
centric circles in Fig. 2, which exhibit an increasing trend as
the radial axes extend outward. The comparison between the
baseline and the proposed approach indicates that the latter not
only achieves lower RMSE values for cases with low scarcity
but also maintains its performance in high-scarcity situations. In
contrast, while the baseline approach demonstrates performance
comparable to that of the proposed approach for low-scarcity
cases, a significant decrease in performance is observed in
extremely high-scarcity situations. This comparison emphasizes
that the proposed approach outperforms the baseline approach
by a substantial margin, particularly in high-scarcity scenarios.
This tendency is commonly observed in black-box NN, which
tends to overfit with limited training data. This is evident in
Fig. 2, where the level of the proposed approach performance
remains unaffected in the face of limited training data, in
contrast to the baseline DNN, which shows a performance
decline under similar conditions. Despite the reduction in the
size of the training data, the proposed approach maintains
relatively robust performance, reflected in an RMSE of 7.46
dB. Importantly, this value does not show a significant increase
compared to the RMSE of 6.97 dB observed in a scenario with
abundant training data, which demonstrates only a performance
drop of 6.4%.

C. Resilience Performance of Proposed Framework

Here we discuss the resilience performance of baseline and
the proposed approach. For this purpose, we have discretized
the distribution of identified features into histograms of bin
sizes 12 and 18, as discussed in section II-D. In the ID case,
where the distribution of test data mirrors that of the training
data, both models demonstrate comparable performance, with
marginal differences observed in their RMSE values. However,
when subjected to NID scenarios characterized by selectively
sampled training data from distinct regions of the feature
histogram, noteworthy variations in performance emerge.

For instance, when considering the feature of Distance with
a bin size of 12, the proposed NN exhibits superior resilience
compared to the baseline DNN in the NID case, achieving a
lower RMSE value of 6.71 dB compared to 52.21 dB for the
baseline model. This trend is consistent across other feature-
bin combinations, suggesting that the proposed NN is better
equipped to handle unrepresentative and imbalanced datasets,
as evidenced by its ability to maintain lower RMSE values
across various NID scenarios.

Fig. 2: RMSE evaluation of proposed and baseline schemes across
decreasing training dataset sizes. The radar plot displays the transition
from 40000 training data points to 100 data points in a clockwise
direction, with ascending RMSE values indicated by inner circles. This
result shows that the baseline faces high RMSE with limited training
data, whereas the proposed approach remains consistent.

Fig. 3: Comparison of baseline and proposed models’ performance
in predicting RSRP, using histogram-based discretization of Distance
feature. The proposed model shows significant improvement over the
baseline during testing.

Interestingly, the performance disparity between the base-
line and proposed models becomes more pronounced with an
increased bin size, particularly evident in the feature of UE Tilt.
In the NID case with a bin size of 18, the proposed NN achieves
significantly lower RMSE values compared to the baseline
DNN, highlighting its enhanced adaptability to datasets charac-
terized by larger bin widths and greater variability. Moreover,
when examining the feature of BS Azimuth, the proposed
NN demonstrates a noteworthy improvement in performance
compared to the baseline model in the NID case, particularly
evident with a bin size of 18. Here, the proposed NN achieves
an RMSE value of 7.75 dB, significantly outperforming the
baseline DNN’s RMSE value of 82.75 dB.

Overall, these results underscore the effectiveness of the
proposed NN model in addressing the challenges posed by data



Fig. 4: Comparison of baseline and proposed models’ performance in
predicting RSRP, using histogram-based discretization of BS Azimuth
feature. The proposed model shows significant improvement over the
baseline during testing.

Fig. 5: Comparison of baseline and proposed models’ performance
in predicting RSRP, using histogram-based discretization of UE Tilt
feature. The proposed model shows significant improvement over the
baseline during testing in both sizes (12 and 18).

scarcity and distribution shifts in real-world wireless network
scenarios. The model’s robust performance across varying
degrees of data scarcity and feature distributions attests to its
potential utility in practical applications, offering promising
prospects for enhancing network planning and optimization
processes.

IV. CONCLUSION AND FUTURE WORKS

The proposed approach offers a unique combination of
interpretability and resilience, making it an exceptional solu-
tion for wireless network modeling. It outperforms traditional
black-box DNN models, especially in scenarios with limited
data. Its adaptability is improved by simplified hyperparameter
determination and the elimination of prior system knowledge
requirements. Providing explicit mathematical equations en-
sures transparency and optimization insights. This innovative
framework bridges domain knowledge and machine learning,
offering reliable models tailored to evolving networks. Future
work could explore integration into 6G networks and exten-
sion to millimeter-wave frequencies, alongside comprehensive
validation in real-world environments.
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