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Abstract—Ultradense heterogeneous networks (HetNets) are
emerging as an inevitable approach to tackle the capacity crunch
in cellular networks. However, imbalanced load among small and
macrocells and poor resource utilization as a consequence in Het-
Nets remains a long-standing problem. This paper addresses this
problem by presenting a solution for maximization of coverage and
capacity while minimizing load imbalance among macro and small
cells. Most recent studies on the topic focus on either optimization
of coverage, capacity or load, or a combination of two of these three
intertwined objectives. We formulate the optimization problem as
a function of two hard parameters namely antenna tilt and trans-
mit power, and a soft parameter, cell individual offset, that affect
the coverage, capacity, and load directly. The resulting solution is
a combination of the otherwise conflicting coverage and capacity
optimization (CCO) and load balancing (LB) self-organizing net-
work (SON) functions. In the presented joint CCO-LB solution, a
conflict free operation of CCO and LB is ensured by designing a
novel load aware user association methodology and resolving the
effects of shadowing on coverage probability using stochastic ap-
proximation. The problem is proven to be nonconvex and is solved
using genetic algorithm, sequential quadratic programming, and
pattern search algorithms. The proposed CCO-LB solution is com-
pared against two recently proposed CCO and CCO-LB solutions
in the literature. Results show that the proposed solution can yield
significant gain in terms of throughput, spectral efficiency, and load
distribution.

Index Terms—Heterogeneous networks, self-organizing net-
works, coverage, capacity, load balancing, joint optimization, 5G
mobile cellular networks.

I. INTRODUCTION

D ESPITE recent advancements in many physical layer tech-
niques and possible exploitation of new spectrum at higher

frequencies, network densification remains the most yielding
means to meet capacity demands of future 5G cellular networks.
Densification, in one form or another, has also emerged as the
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most prolific defense against the energy and spectral efficiency
challenges that plague modern cellular networks [1]–[3]. How-
ever, network densification is not without limitations itself. One
of the biggest challenges facing dense heterogeneous networks
(HetNets) is the imbalance of load between macro cells and
small cells [4]–[10]. This load imbalance mainly stems from re-
ceived power disparity between macro cell and small cells and
causes poor utilization of system capacity.

A. Background and Motivation

State-of-the-art cellular systems use Reference Signal Re-
ceived Power (RSRP) based user association mechanism where
the cell with highest RSRP is the serving cell. Most academic
studies on HetNets also build on the same user association
method. The problem with this method is that it does not con-
sider several factors that determine the overall performance of
the network. These factors include load in the candidate cell,
Signal to Interference and Noise Ratio (SINR) from the candi-
date cell, the effective load generated by the user to be associ-
ated, available free resources in the candidate cell, as well as
the impact of new user association on interference and hence
overall system capacity.

The problems caused by RSRP based user association become
more pronounced in HetNets because compared to macro cells,
small cells have much shorter range due to their low transmission
power and shorter antenna heights. Thus, given a uniform user
distribution, a small cell in dense HetNets is likely to attract
much smaller number of users compared to macro cells. Full
spectrum reuse between small cells and macro cells can lead to
serious load imbalance, resource inefficiency and degradation in
Quality of Experience (QoE). Cell individual offset (CIO) has
been proposed and standardized by the 3GPP [11] to address
this problem. A positive value of CIO artificially extends the
range of a cell, thereby allowing additional users to be associ-
ated with a cell as long as the RSRP from that cell is smaller
than the RSRP of the strongest neighbor only by CIO value or
less.

However, several recent studies [12]–[15] show that CIO is
not the panacea for the load imbalance and resultant resource
inefficiency problem in HetNets either. The aftermath of CIO en-
abled association is illustrated in Figs. 1(a) and 1(b). In Fig. 1(a),
small cells do not use any CIO, and thus have a marginal share
of associated users compared to macro cells. In Fig. 1(b), small
cells are given CIO of 10 dB each which gives them a range boost
proportional to CIO, thus increasing their associated user share.
However, note that users who have been shifted from macro
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Fig. 1. RSRP-based user association.

TABLE I
SINR VALUES OF RE-ASSOCIATED USERS BEFORE AND AFTER CIO CHANGE

cells to small cells due to CIO suffer a significant drop in SINR.
The pre and post CIO change SINRs of users whose associations
changed are compared in Table I. This example demonstrates
that blanket use of empirically determined CIO values can af-
fect overall resource efficiency in the system negatively, thereby
causing the same problem that CIOs were introduced to solve
in the first place. Instead, CIOs need to be determined through
a method that considers user traffic demands and current cell
loads. Most importantly CIO values should be determined in

conjunction with two other key hard parameters that affect SINR
as well as cell association i.e., transmit powers and antenna tilts.

B. Relevant Work

In commercial networks, to-date CIO values are set using ad-
hoc methods. Some recent academic studies on LB that do con-
sider CIO as a parameter of interest [12]–[15], provide heuristic
solutions for finding CIO values to balance cell loads but fall
short of assessing the impact of CIO on user QoE. These studies
effectively verify the conclusion drawn from the above exam-
ple that heuristic or ad-hoc settings of CIO can create more
problems than they solve.

Additionally, an effective solution towards LB or CCO in
emerging HetNets cannot simply focus on one or two parameters
out of CIO, antenna tilt, and transmit powers, but must take
into account the interplay among all three parameters. There
exist some recent studies on CCO [16]–[18] that focus purely
on SINR optimization with one or two of the aforementioned
parameters. However, as demonstrated previously in Figs. 1(a)
and 1(b) and further explained in Section III, in HetNets SINR
alone is not always the suitable optimization criteria as it can
contribute to overall performance degradation.

Compared to CCO, LB has been studied more extensively,
e.g., see the survey on LB and the references therein in [19].
However, most of these studies on LB consider hard parameters
only i.e., either tilt, and/or transmit power for optimization and
do not include CIO (see Fig. 5, in [19]). Tilt and transmit power
based LB may work for macro cell only networks, but these
two parameters alone cannot offset the imbalance of cell load
between macro and small cells in HetNets. Only a handful of
studies consider CIO as an optimization parameter for LB [7],
[8], [12], [13], [20] alone or with at most one other parameter.

While CCO [6], [16], [17], [21] and LB [7], [8], [12]–[15],
[22]–[26] problems have been addressed individually and ex-
tensively in literature, the co-design of CCO and LB, the only
practically viable way to implement both CCO and LB in a Het-
Net concurrently, has received limited attention. Co-design of
other SON functions such as Mobility Robustness Optimization
and Mobility Load Balancing [27], and LB and Handover Opti-
mization [28], [29] has been studied from various perspectives.
However, co-design of CCO and LB is particularly challeng-
ing because of their parametric overlap as explained in [30] as
well as objective conflict between the two SON functions as
expatiated in [31]. As a result, most LB solutions presented in
literature often balance load at the cost of CCO, and vice versa.
An effective solution has to be a judicious combination of both
CCO and LB.

The most relevant study to our work is presented in [32]. This
study proposes joint optimization of CCO and LB by minimizing
the log sum of cell loads in the network while maintaining min-
imum coverage threshold via a constraint. The solution makes
use of only two of the three parameters of interest i.e., antenna
tilts and CIOs. A heuristic algorithm is used to first optimize an-
tenna tilts for load balancing. The cell partitions thus obtained
are further refined using CIOs since the authors argue that ac-
curate cell coverage mapping with antenna tilts is not possible
in real world scenarios. Contrary to the approach presented in
[32], our proposed CCO-LB solution leverages transmit powers,
antenna tilts and CIOs within one formulation. Our approach is
fundamentally different than that in [32] in the sense that in-
stead of focusing on load minimization, our objective function



ASGHAR et al.: CONCURRENT OPTIMIZATION OF COVERAGE, CAPACITY, AND LOAD BALANCE IN HETNETS 8783

is focused on throughput maximization, but embeds LB into the
optimization problem through a built-in load fairness measure
among cells as well as through introduction of a novel load
aware cell association mechanism. A comparative analysis of
our proposed solution with the solution in [32] is presented in
Section V.

C. Proposed Approach and Contributions

In 3GPP Release 9 of Radio Access Network specifications
[33], CCO SON function is designed to ensure automatic service
and coverage reliability. to network subscribers whereas LB
SON function is aimed at minimizing cell congestion in the
network. The ideal goals of CCO SON function can be given
as:! Minimum received downlink power Pc

r,u for a predefined
percentageϖ of users should meet or exceed the minimum
coverage threshold i.e, RSRP value Pc

th ;! Each user u is served with a data rate that should meet or
exceed a predefined data rate τ̂u for that user or class of
users.

On the other hand, the primary goal of LB SON function can
be given as:! Load distribution among cells should remain such that no

cell becomes congested as long as there are cells with free
radio resources in the neighborhood of that cell.

CCO and LB SON functions, if designed and deployed cor-
rectly, have the capability to enhance the QoE and resource
efficiency in HetNets tremendously. However, designing a CCO
solution that can work in-tandem with LB and vice versa, re-
mains an open problem so far. The difficulty in designing a
combined CCO-LB solution stems from the following facts:

1) CCO and LB SON functions have different objectives
but leverage the same optimization parameters including
transmit powers, CIOs and antenna tilts;

2) CCO and LB impact user QoE in two distinct and con-
flicting ways [30], [31], [34];

3) In HetNets relationships between load, capacity and SINR
become intertwined, as highlighted in several recent stud-
ies [4], [8], [32], [35]. The load in a cell for given traffic
demand depends on SINR perceived by the users associ-
ated with that cell. On the other hand, SINR of a user is
affected by the load of neighboring cells;

4) While both CCO and LB can leverage CIO, CIO boost
set to balance load can result in poorer SINR as shown
in Figs. 1(a) and (b) leading to the previously mentioned
problem.

Our proposed approach tackles these challenges by embed-
ding the goals of CCO and LB into a single objective function
by introducing a load aware user association method and by
jointly optimizing soft parameter CIO and hard parameters tilt
and transmit power. The contributions of this paper can be sum-
marized as follows:

1) Modeling and Analysis: We formulate two versions of
the optimization problem both of which capture the goals of
both CCO and LB SON functions in terms of antenna tilt, trans-
mit power and CIO to reflect the cases of known and unknown
user traffic demand. We resolve the uncertainty in user cover-
age, and consequently the coverage constraint of CCO, due to
shadowing by employing stochastic approximation to transform
the coverage probability constraint into a deterministic coverage
constraint. We analyze the convexity of our objective function

and show that the problem is a non-convex large scale NP-hard
problem. However, since the objective function in our formu-
lation provides a quickly evaluable quantitative measure of the
impact of optimization parameters on network performance, we
demonstrate that techniques to solve large scale problems such
as genetic algorithm, sequential quadratic programming and pat-
tern search can be employed to effectively solve the problem.

2) A New Cell Association Methodology: We propose and
evaluate a novel user association technique that incorporates
cell load into the user association decision in addition to RSRP.
While the proposed user association scheme is mainly intended
for emerging 5G HetNet deployments, we also present a method-
ology to implement this scheme in legacy cellular networks such
as LTE without requiring any change to the standard. The pro-
posed load-aware user association scheme also offers a mecha-
nism to set the priority level between CCO and LB at cell level
or in a centralized fashion as per operator’s policy. We also com-
pare our proposed load-aware user association scheme against
state of the art Max RSRP and Max SINR user association
schemes.

3) System Level Performance Analysis and Benchmarking:
We use multi-tier system level simulations to conduct a com-
prehensive performance analysis of proposed joint CCO-LB
solution in realistic HetNet settings using 3GPP compliant sim-
ulation parameters. We compare the results of our solution with
the current industrial practice of using fixed parameter settings,
and with the two most relevant studies in [6] and [32] respec-
tively that present solutions for CCO and CCO-LB respectively.
Our comparative analysis investigates performance in terms of
a range of key performance indicators (KPIs) that includes net-
work loading, user throughput, SINR and spectral efficiency.

4) New Insights for HetNet Design and Standardization in
5G: The analysis and results presented in this paper also provide
the following design insights for radio efficiency improvement
in legacy networks and standardization in emerging 5G based
HetNets:

1) Joint optimization of antenna tilts, transmit powers and
CIOs yields better performance than optimization of indi-
vidual parameter;

2) State-of-the-art user association methodology needs an
evolution beyond RSRP(+CIO) based user association to
include new factors such as cell loads, amplifier operat-
ing point (for energy efficiency considerations), expected
traffic of incumbent user, mobility pattern estimations etc.;

3) There is a need for paradigm shift from SINR focused
network parameter optimization since SINR optimization
in HetNets becomes almost meaningless in the face of
imbalanced cell loads;

4) CIO can be used for more than just biasing RSRP. Our
results suggest that CIO can be modulated with informa-
tion about the residual capacity in the cell in dynamic
fashion to implement the proposed new load aware user
association methodology. This would allow the proposed
load-aware user association to be implemented without
requiring any change in the current standard.

The paper is organized as follows: Section II presents the
system model used for the joint formulation of CCO-LB SON
function problem, Section III provides the problem formulation,
Section IV presents the solution methodologies used to solve the
joint CCO-LB SON function problem, and Section V presents
the results of proposed solution as well as comparison with the
solutions in [6] and [32].
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TABLE II
KEY SYMBOL DEFINITIONS

II. SYSTEM MODEL

In this Section, we describe the system model employed in
the formulation of the joint CCO-LB SON function and the
underlying assumptions. Furthermore, Table II provides the list
of key symbols used in the problem formulation.

A. Network and User Specifications

For formulating the joint CCO-LB problem, we consider a
network of hexagonal macro base stations with at least one ran-
domly deployed small cell in the coverage area of each macro
cell. 100% frequency reuse is considered between macro and
small cells. Macro cells use directional antennas while small
cells employ omni-directional antennas. An Orthogonal Fre-
quency Division Multiple Access (OFDMA) based system with
resources divided into physical resource blocks (PRBs) of fixed
bandwidth, is assumed. For conciseness, the downlink direction
is chosen for the analysis as this is where most imbalance in
coverage of macro and small cells occurs. It is assumed that
users in the network are stationary. It is further assumed that
requested user data rate is known which gives a lower-bound on
the desired instantaneous user throughput. Desired user through-
put can be modeled as a spatio-temporal function of subscriber
behavior, subscription level, service request patterns, as well as
the applications being used with the help of big data analytics
as recently proposed in [36]. Our formulation is not dependent
on particular scheduling techniques.

B. Parameters and Measurements

1) Cell Loads: We can define instantaneous cell load as the
ratio of PRBs occupied in a cell during a Transmission Time
Interval and total PRBs available in the cell. This information
is available as a standard measurement from 3GPP as “UL/DL
total PRB usage” [33] and can be broadcast to the users. To
define cell load ηc for our system model, we first calculate

minimum number of PRBs ηc
u to be allocated to a user:

ηc
u =

1
ωB

(
τ̂u

f(γc
u )

)
(1)

where τ̂u represents the (desired) throughput of user u ∈ Uc ,
where Uc is the set of all active users associated with cell c.
γc

u represents the SINR of user u when associated with cell c
and ωB is the bandwidth per PRB. f(γc

u ) denotes the spectral
efficiency of the user link for given SINR. If we consider features
such as MIMO or coding scheme gains and scheduling gains,
f(γc

u ) can be defined as f(γc
u ) := A log2 (1 + Bγc

u ), where A
and B are constants that can capture throughput gains (per PRB)
achievable from various types of diversity schemes, or losses
incurred by signaling overheads and hardware inefficiencies.
For the sake of simplicity and without loss of generality, we
assume A = B = 1. Thus, we can define residual cell capacity
and cell load as:

Residual Capacity = Λc = Nc
b − 1

ωB

⎛

⎝
∑

Uc

τ̂u
log2 (1 + γc

u )

⎞

⎠

(2)

Cell Load = ηc =
1

Nc
b

⎛

⎝ 1
ωB

⎛

⎝
∑

Uc

τ̂u
log2 (1 + γc

u )

⎞

⎠

⎞

⎠

(3)

where Nc
b is the total PRBs at cell c. Consequently, the range

of cell load is ηc ∈ [0,∞). If the cell load exceeds 1, the cell in
reality will be fully loaded and incoming users will be blocked.
The value of load ηc is therefore referred to as virtual load and
ηc > 1 reflects congestion in cell c.

2) Received Power: In LTE networks, downlink RSRP from
nearby base stations is continuously monitored by the users
and reported to the serving cell for a number of purposes. In
our proposed CCO-LB approach we use the RSRP to calculate
coverage probability in the network.

3) Cell Individual Offset: CIO can be defined as a combina-
tion of multiple cell association parameters introduced by the
3GPP [11] including cell hysteresis, cell offsets and event re-
lated offsets which are used to decide user association. CIO
information is by each cell and decoded by the users as part of
standard operation. For the purpose of this paper we treat CIO
as a simple virtual boost in RSRP.

III. PROBLEM FORMULATION

To incorporate QoE into the joint CCO-LB optimization, we
choose to formulate our problem as a per cell per user throughput
optimization problem. The first step towards this goal is to build
a SINR model as function of all three optimization parameters
under consideration.

A. User SINR as Function of Tilt, Transmit Power and CIO

Downlink SINR γ̂c
u of a reference signal at user location

u when associated with cell c can be expressed as the ratio
of RSRP Pc

r,u measured by user u from cell c to the sum of
RSRP measured by user u from all interfering cells i such that
∀i ∈ C/c, and the noise power κ:

γ̂c
u =

Pc
t GuGc

uδ
c
ua (dc

u )−β

κ+
∑

∀i∈C/c P i
t GuGi

uδ
i
ua (di

u )−β
(4)
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where Pc
t and P i

t are the transmit powers of serving cell c and
interfering cell i, Gu is the gain of user equipment, Gc

u and Gi
u

are the gains of transmitter antenna of the cells c and i towards
user u, δc

u and δi
u is the shadowing observed at the location of

user u from serving cell c and interfering cell i, a is the pathloss
constant, dc

u and di
u represent distance of user u from cell c and i,

and β is the pathloss exponent. The numerator in (4) is obtained
from the standard exponential pathloss model while δc

u and δi
u

in equation (4) can be modeled as random variables with either
Gaussian or log-normal distribution varying over both space and
time.

The expression in (4) is only useful when estimating the
quality of reference signals which are always being transmitted
by all the cells. Thus, γ̂c

u is not a true measure of SINR on the
PRBs where interference generated is dependent on utilization
of that same PRB in other cells at the same time. We assume
user arrival in the system follows a general distribution, thus
the exact interference becomes a function of time. Therefore, to
obtain an SINR estimate independent of time, a reasonable low
complexity substitute for average downlink interference from
a cell i is to use the ratio of occupied PRBs in the cell. The
expression for SINR estimate for user u in cell c can then be
given as:

γc
u =

Pc
t GuGc

uδ
c
ua (dc

u )−β

κ+
∑

∀i∈C/c η̂iP i
t GuGi

uδ
i
ua (di

u )−β
(5)

where η̂i denotes actual cell load in a cell, that for a cell i can
be obtained by modifying (3) as:

η̂i =
1

Ni
b

⎛

⎝ 1
ωB

⎛

⎝
∑

Ûi

τ̂u
log2 (1 + γi

u )

⎞

⎠

⎞

⎠ (6)

where Ûc ⊆ Uc ⊆ U is the set of all active user associated with
cell c. Here U represents the complete set of users in the network
and the difference set Uc − Ûc represents users who requested
but were denied resources by the cell c due to congestion which
implies η̂c ∈ [0, 1]. Note that in SINR expression (5) above, we
do not use the virtual cell load from (3), but the actual cell load
which can never exceed 1.

As macro cells in the system under consideration use direc-
tional antennas, using the expression for 3D antenna gain from
[37], the gain from base station to user Gc

u can be given as:

Gc
u = 10

−1.2

(
λv

(
ψ c

u −ψ c
t i l t

B v

) 2

+λh

(
φ c

u −φ c
a z i

B h

) 2
)

(7)

where λh and λv are the weights of horizontal and vertical beam
patterns of the antenna, ψc

u is the vertical angle between user
c and the antenna of cell c, ψc

tilt is the tilt angle of serving
cell antenna, φc

u is the horizontal angle of user u from cell c,
φc

azi is the azimuth of antenna of cell c, and Bh and Bv are
horizontal and vertical beam widths of the transmitter antenna
of cell c. As our variable of interest in (7) is tilt angle and the
rest of the antenna parameters can be treated as constants, for
the sake of conciseness we can simplify (7) using the following
substitution:

xc
u =

(Bv )2λh

λv

(
φc

u − φc
azi

Bh

)2

(8)

and re-write the SINR expression from (5) as:

γc
u =

Pc
t Gu 10µ

(
(ψ c

u −ψ c
t i l t )

2
+xc

u

)

δc
ua (dc

u )−β

κ+
∑

∀i∈C/c η̂iP i
t Gu 10µ

(
(ψ i

u −ψ i
t i l t )

2
+xi

u

)

δi
ua (di

u )−β

(9)
where µ is consolidated constant based on fixed antenna char-

acteristics.
Finally, we address CIO in the SINR expression. This offset

parameter is used for cell association as:

Pc
r,udBm

= Ṕ c
r,udBm

− Pc
C IOd B

(10)

where Pc
r,udBm

is the true signal power in dBm received by user
u from cell c and Ṕ c

r,udBm
is the received power reported back

by user u to cell c in dBm. This value includes Pc
C IOd B

(the
CIO value of cell c in dB) which is then subtracted by the cell
to retrieve Pc

r,udBm
.

The motivation behind introduction of CIO was to allow load
balancing among cells. However, as described previously in
Section I, if CIO has to be invoked to alter natural RSRP based
cell association for the user, the SINR for that user is bound
to be lower (see Figs. 1(a) and 1(b)). Nevertheless, CIO is a
necessary means to balance cell loads while capacity loss due to
drop in SINR can partially be offset if the cell association takes
into account cell load in addition to RSRP.

B. An Improved Load-Aware User Association Mechanism

The state-of-the-art method of determining user associations
Uc is to use the RSRP measurements along with CIO values
as given in (10). However, this method overlooks the key role
of user association in overall capacity and QoS through cell
load and SINR distributions. To overcome this challenge, we
propose to establish user association with cell j not only based
on received power but also load in that cell. More specifically,
this load-aware user association with cell j can be determined
as:

Uj :=
{
∀u ∈ U | j = arg max∀c∈C

((
1
ηc

)α
∗
(
Ṕ c

r,udBm

)(1−α)
)}

(11)

where Uj is a set of all users for whom (a scaled version of) the
product of the RSRP(+CIO) in Watts Ṕ c

r,u and the normalized
residual cell capacity is maximized for cell j. α ∈ [0, 1] is a
weighting factor introduced to allow trading between the impact
of RSRP and cell load measurements in the user association. As
established in (3), cell load is dependent on the SINR of users
in the cell i.e., better the SINR of users in candidate cell, lesser
the load in the cell for given traffic demand. Note that in (11), to
make new user association decision with a cell we use the virtual
load and not the actual load. While, using actual cell load that has
range η̂c ∈ [0, 1] can indicate the current load in a cell, it cannot
help take into account the users that are already associated with
that cell but were not served. On the other hand, virtual cell load
as defined in (3) with range ηc ∈ [0,∞), provides a truer picture
of effective potential load in the candidate cell.

The expression in (11) gives the set Uj of users to be associ-
ated with the cell j and thus represents both active and idle users.
On the other hand, the set Uc used in the expression for SINR in
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(9) represents the set of only active users associated with the cell
c. With α = 1, the user association simply becomes a function
of cell load and SINR at the time of association. Consequently
this cell association espouses the LB SON function only. On
the other hand, if α = 0, the proposed user association method
simply represents state-of-the-art RSRP based cell association
method which helps achieve coverage optimization aspect in the
CCO SON function. Determining the optimal value of weight-
ing factor α is an optimization problem worth investigating in
itself. In Section V, we evaluate KPIs with a range of α and
discover interesting trends that can be used to develop some
practical design guidelines.

C. Problem Statement

A common approach towards throughput maximization in LB
or CCO is to use a problem formulation that maximizes the mean
throughput per user per cell. However, if we try to maximize
the arithmetic mean of user throughput determined by SINR
expression derived above, users with no throughput and cells
with no load will be equally acceptable as users with very high
throughputs and cells with full loads. While such formulation
will achieve the objectives of CCO, it will not perform load
balancing, and hence cannot be suitable approach for joint CCO-
LB. To simultaneously reflect the goals of both CCO and LB in
a single objective function, we propose the objective function
to be modeled as:

max
P c

t ,ψc
tilt,P c

CIO

⎛

⎜⎝
∏

C

⎛

⎝
∏

Uc

ωc
u log2 (1 + γu

c )

⎞

⎠

1
|Uc |
⎞

⎟⎠

1
|C|

(12)

The outer geometric mean in this formulation dampens the
load disparity among cells, and thus integrates LB goal into the
optimization objective. This formulation is intended for scenar-
ios where user required rates are not known or predicted. Thus,
use of inner geometric mean instead of arithmetic mean for user

throughput protects users with lower SINR from being unfairly
treated, while maximizing the overall throughput.

If, however, the desired user throughput is already known or
can be predicted, for example using the framework presented
in [36], we can adopt a more greedy approach by replacing
the inner geometric mean with arithmetic mean as it is bound to
provide an improved or equivalent result [38]. The new objective
function with this assumption is given as:

max
P c

t ,ψc
tilt,P c

CIO

(
∏

C

(∑
Uc
ωc

u log2 (1 + γu
c )

|Uc |

)) 1
|C|

(13)

A comparison between performance of both formulations is
presented in Section V. The formulations in (12) and (13) inherit
two basic constraints to achieve full objectives of CCO and LB
SON function i.e.:

i) The ratio of covered users C must meet or exceed the min-
imum network coverage threshold ϖ i.e. C ! ϖ where
C is dependent on the number of users satisfying the
equation Pc

r,u ! Pc
th ;

ii) Cell load, as defined in (3), for every cell has to be less
than or equal to the cell load thresholds set by operator
policies: ηc " ηc

th∀c ∈ C
We introduce an additional constraint in the formulation
to avoid blocking any users i.e.:

iii) The set of served active users Ûc by cell c must be equal
to the total set of active users Uu associated with the cell
c: Ûc = Uc .

The satisfaction of constraint (i) depends heavily on the
pathloss model employed in (4). Despite the assumption that
user location remains the same over time, random variations in
shadowing δc

u over space introduce uncertainty into the determi-
nation of Pc

r,u . Consequently C becomes a function of the distri-
bution of δc

u such that constraint (i) becomes Pr(C(δc
u )) ! ϖ.

This also implies that the evaluation of Pc
r,u ! Pc

th is a proba-
bilistic problem rather than a deterministic one which can make

max
P c

t ,ψc
tilt,P c

CIO

Ω = (14)

max
P c

t ,ψc
tilt,P c

CIO

⎛

⎜⎝
∏

C

⎛

⎝
∏

Uc

ωc
u log2

⎛

⎝1 +
Pc

t Gu 10µ
(
(ψ c

u −ψ c
t i l t )

2
+xc

u

)

δc
ua (dc

u )−β

κ+
∑

∀i∈C/c η̂iP i
t Gu 10µ

(
(ψ i

u −ψ i
t i l t )

2
+xi

u

)

δi
ua (di

u )−β

⎞

⎠

⎞

⎠

1
|Uc |
⎞

⎟⎠

1
|C

(14a)

OR

max
P c

t ,ψc
tilt,P c

CIO

⎛

⎜⎜⎜⎜⎜⎜⎝

∏

C

⎛

⎜⎜⎜⎜⎜⎜⎝

∑
Uc
ωc

u log2

⎛

⎝1 + P c
t Gu 10

µ

(
(ψ c

u −ψ c
t i l t )

2
+ x c

u

)
δ c

u a(dc
u )−β

κ+
∑

∀i∈C/ c η̂ i P i
t Gu 10

µ

(
(ψ i

u −ψ i
t i l t )

2
+ x i

u

)
δ i

u a(di
u )−β

⎞

⎠

|Uc |

⎞

⎟⎟⎟⎟⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎠

1
|C|

(14b)

subject to=

⎧
⎪⎨

⎪⎩

1
|C|
∑

C
1

|Uc |
∑

Uc
1
(
Pc

r,u ! Pc
th

)
! ϖ,

ηc " ηc
th∀c ∈ C

Ûc = Uc

(14c)

Uj :=
{
∀u ∈ U | j = arg max∀c∈C

((
1
ηc

)α
∗
(
Ṕ c

r,udBm

)(1−α)
)}

(14d)
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Fig. 2. Interference distribution over antenna tilts of interferers.

the overall problem intractable. In order to overcome this issue,
we propose to reformulate constraint (i) such that it becomes
deterministic.

Proposition 1: For Gaussian distributed shadowing δc
u , the

probable coverage ratio Pr(C(δc
u )) can be estimated using the

transformation 1
|C|
∑

C
1

|Uc |
∑

Uc
1
(
Pc

r,u ! Pc
th

)
.

Proof: The complete proof of proposition 1 is provided in
Appendix A. #

Substituting the expression for SINR from (9) in (12) gives
the fair joint CCO-LB formulation given in (14a), while sub-
stituting SINR from (9) in (13) gives the greedy joint CCO-LB
formulation given in (14b). Combining the two formulations
with the above problem constraint and user association expres-
sion in (11) gives the final formulation in (14), (14a)–(14d),
shown at the bottom of previous page.

IV. SOLUTION METHODOLOGY

In this Section, we first analyze the convexity of the joint CCO
LB user Association aware SON function (CLASS) presented
in (14) and then present methodologies to implement it.

A. Convexity Analysis

Assuming we have a network of macro cells only, we can
define the range of transmission powers Pc

t ∈ [20 W, 40 W],
antenna tilts as ψc

tilt ∈ 90◦ + [0◦, 15◦] and CIOs as Pc
C IO ∈

[0 dB, 10 dB]. Affine sets are convex sets, therefore, the first
requirement for convexity for problem (14) i.e., the constraints
should be convex, is fulfilled. We know that geometric and
arithmetic means preserve convexity of a function. We also
know that the logarithmic function is also a convex function
over the interval (0,∞). This leaves, the SINR expression in (9)
to be examined to see if the formulation in (14) is convex or not.

Proposition 2: SINR as a function of antenna tilts as given
in (9), is a non-convex function.

Proof: Fig. 2 plots the interference (denominator of (9)) as
function of antenna tilts of two neighboring cells. Clearly it is
not a convex function implying proposition 2. A more formal
proof of proposition 2 is provided in Appendix B #.

B. Alternate Solution Methodologies

Given the non-convexity and large scale of the problem, we
must resort to heuristic approaches that can find optimal or near
optimal solution of the formulation in (14).

Algorithm to Implement Proposed Cell Association: Before
delving into possible non-convex optimization techniques to
solve (14), an algorithm to practically implement the proposed

Algorithm 1: Objective Function (14) Implementation
Routine.

Input: P c
t ,ψc

tilt,P
c
CIO

Output: Ω
(
P c

t ,ψc
tilt,P

c
CIO

)
(14a) or (14b)

1: for u ∈ U do
2: Find serving cell j = arg max∀c∈C

(
Ṕ c

r,udBm

)

3: Calculate SINR γ̂j
u and ηj

u
4: end for
5: for c ∈ C do Calculate cell load ηc

6: end for
7: for u ∈ U do
8: Find new serving cell j =

arg max∀c∈C

((
1
ηc

)α
∗
(
Ṕ c

r,udBm

)(1−α)
)

9: Find updated SINR γj
u and ηj

u
10: end for
11: for c ∈ C do Calculate cell load ηc

12: end for
13: if 1

|C|
∑

C
1

|Uc |
∑

Uc
1
(
Pc

r,u ! Pc
th

)
! ϖ then

14: if ηc " ηc
th∀c ∈ C then

15: if Ûc = Uc then
16: Calculate Ω

(
P c

t ,ψc
tilt,P

c
CIO

)

17: end if
18: end if
19: else
20: Ω

(
P c

t ,ψc
tilt,P

c
CIO

)
= −∞

21: end if

user associations for given values of the three optimization pa-
rameters and obtain the updated value of objective function with
new user associations is presented in Algorithm 1. This routine
has to be called at each iteration of the heuristic optimization
techniques to be discussed in the following.

1) Sequential Quadratic Programming (SQP): One way to
solve non-convex problems of the type (14) that have linear con-
straints is to approximate it piece-wise with a convex quadratic
function and then use convex optimization to solve it, a method
also known as sequential quadratic programming. To leverage
SQP we can re-write the problem in (14) as:

max
P c

t ,ψc
tilt,P c

CIO

−Ω
(
P c

t ,ψc
tilt,P

c
CIO

)

subject to

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W
(
P c

t ,ψc
tilt,P

c
CIO

)

:= ϖ − 1
|C|
∑

C
1

|Uc |
∑

Uc
1
(
Pc

r,u ! Pc
th

)
! 0,

X
(
P c

t ,ψc
tilt,P

c
CIO

)
:= ηc − ηc

th " 0∀c ∈ C

Y
(
P c

t ,ψc
tilt,P

c
CIO

)
:= Ûc − Uc = 0

Uj :=
{
∀u ∈ U | j = arg max∀c∈C

((
1
ηc

)α
∗
(
Ṕ c

r,udBm

)(1−α)
)}

(15)

As compared to unconstrained problem or problem with in-
equality constraint, equality constraints can reduce the search
space of optimization problem significantly. We express user
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association as an equality constraint such that for u ∈ Uc

Z
(
P c

t ,ψc
tilt,P

c
CIO

)
:=

∑

i∈C/c

1
((

1
ηc

)α
∗
(
Ṕ c

r,udBm

)(1−α)

!
(

1
ηc

)α
∗
(
Ṕ c

r,udBm

)(1−α)
)
− |C| + 1 = 0. (16)

The expression in (16), where 1(.) is the indicator function,
means that for a user u to be associated with cell c, the association
function of the user with that cell must be greater than all the
other cells. Lagrangian of (15) can be given as:

L
(
P c

t ,ψc
tilt,P

c
CIO, λ1,λ2,λ3,λ4,λ5,λ6,λ7)

= Ω
(
P c

t ,ψc
tilt,P

c
CIO

)
− λ1W

(
P c

t ,ψc
tilt,P

c
CIO

)

−
∑

c∈C

λ2
cX
(
P c

t ,ψc
tilt,P

c
CIO

)
−
∑

c∈C

λ3
cY
(
P c

t ,ψc
tilt,P

c
CIO

)

−
∑

u∈U

λ4
uZ
(
P c

t ,ψc
tilt,P

c
CIO

)
−
∑

c∈C

λ5
c

(
Pc

t − Pc
t,min

)

−
∑

c∈C

λ6
c (ψc

tilt − 90) −
∑

c∈C

λ7
c (Pc

C IO ) (17)

where λx represents the x-th vector of Lagrangian multipli-
ers for the constraints in (15) and (16). Thus, the quadratic
sub-problem to be solved at each iteration of SQP is given by
(18) shown at the bottom of this page, where Ĥ represents
the approximate Hermitian matrix, which is updated at each
iteration using the Broyden-Fletcher-Goldfarb-Shanno approx-
imation method [39].

2) Other Heuristic Techniques: Through results presented
in Section V, we found that SQP returns an acceptable solu-
tion with low number of iterations in most instances at the cost
of a lack of guarantee that the solution is optimal due to the
large dimensions of the problem in (14). Furthermore, the enor-
mous search space size of (14) makes validation of the results
produced through brute force almost impossible. Therefore, we
tried a number of heuristic techniques that are known to converge
to optimal solutions given enough iterations. In the following,
we discuss two heuristics which yielded most promising results
for this problem.

a) Genetic Algorithms: Genetic algorithms are known to
be one of the most suitable heuristic algorithms available for
solving complex combinatorial problems of kind of (14). It is
important to note that the genetic algorithm starts from a random
parameter set in the solution space, therefore, for each run, the

Algorithm 2: Genetic Algorithm for CLASS
Implementation.

Input:
Algorithm 1 to solve (14)
Parameter set space S(P c

t ,ψc
tilt,P

c
CIO),

Maximum iterations G,
Solution space samples per iteration P,
Key samples per iteration E,
Mutation ratio M.

Output:
Solution X = [P c

t ,ψc
tilt,P

c
CIO]

1: Generate |P| parameter sets from S randomly;
2: Generate values of Ω for each set in P
3: Create an empty set Pop and save the sets from P in it;
4: for i = 1 to G do
5: Number of elite members in Pop numelite = E;
6: Select the best numelite sets in Pop in terms of the

value of Ω and save them in Pop1;
7: Number of crossover solutions numcrossover =

(|P| ∗ numelite)/2;
8: for j = 1 to numcrossover do
9: Randomly select 2 parameter sets X1 and X2

from Pop;
10: Generate X3 and X4 by one-point crossover to

X1 and X2;
11: Save X3 and X4 to Pop2;
12: end for
13: for j = 1 to numcrossover do
14: Select a parameter set Xj from Pop2;
15: Mutate each element of Xj at a rate M and

generate new solution X́j ;
16: if X́j is non-feasible then Update X́j with a

feasible solution by repairing X́j ;
17: end if
18: Update Xj with X́j in Pop2;
19: end for
20: Update Pop = Pop1 + Pop2;
21: end for
22: Return the set X which has the best value of Ω in Pop;

time to find the feasible space is different. However, once found,
the algorithm can quickly move towards the optimal solution
in the feasible space. Algorithm 2 represents the pseudo code
for the genetic algorithm used to solve (14).

b) Pattern Search: Another effective solution methodol-
ogy to solve (14) is Pattern Search Method, a simpler ver-

min
y

(
1
2

)
yT Ĥ

(
L
(
P c

t ,ψc
tilt,P

c
CIO, λ1,λ2,λ3,λ4,λ5,λ6,λ7))y + ∇Ω

(
P c

t ,ψc
tilt,P

c
CIO

)

subject to=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi + W
(
P c

t ,ψc
tilt,P

c
CIO

)
" 0, for i = 1

yi + X
(
P c

t ,ψc
tilt,P

c
CIO

)
" 0, for i = 2, . . . , |C| + 1

yi + Y
(
P c

t ,ψc
tilt,P

c
CIO

)
= 0, for i = |C| + 2, . . . , 2|C| + 1

yi + Z
(
P c

t ,ψc
tilt,P

c
CIO

)
= 0, for i = 2|C| + 2, . . . , 2|C| + |U | + 1

yi + Pc
t − Pc

t,min " 0, for i = 2|C| + |U | + 2, . . . , 3|C| + |U | + 1

yi + ψc
tilt − 90◦ " 0, for i = 3|C| + |U | + 2, . . . , 4|C| + |U | + 1

yi + ψc
tilt " 0, for i = 4|C| + |U | + 2, . . . , 5|C| + |U | + 1

(18)
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Algorithm 3: Pattern Search Algorithm for CLASS
Implementation.

Input:
Algorithm 1 to solve (14)
Parameter space S(P c

t ,ψc
tilt,P

c
CIO)

Output: Solution X = [P c
t ,ψc

tilt,P
c
CIO]

1: k = 0;
2: while k < iterationmax do
3: Determine a step size sk using exploratory search

algorithm;
4: Test Ω at parameter set x0 and two more points x1

and x2 in a triangle;
5: Label best, good and worst points as xB , xG

and xW ;
6: Reflect xW on the plane as xR;
7: if Ω(xR) > Ω(xG) then
8: if Ω(xR) > Ω(xB) then replace xW with xR;
9: else Find xE |2xR − (xB + xG)/2, find Ω(xE)

10: if Ω(xE) > Ω(xB) then replace xW

with xE ;
11: end if
12: end if
13: else
14: if Ω(xR) < Ω(xW ) then replace xW with xR;
15: Compute xC = ((xB + xG)/2) + xR) /2,

find Ω(xC)
16: else Compute xC = ((xB + xG)/2) + xW ) /2,

find Ω(xC)
17: end if
18: if Ω(xC) < Ω(xW ) then replace xW with xC ;
19: else Compute xS = (xB + xW )/2 and replace

xW with xS and xG = (xB + xG)/2
20: end if
21: end if
22: Compute pk = Ω(xk) − Ω(xk + sk )
23: if pk > 0 then xk+1 = xk + sk

24: else xk+1 = xk

25: end if
26: Update pattern vectors and step size k = k + 1
27: end while
28: Return X = [P c

t ,ψc
tilt,P

c
CIO]

sion of Powell’s method [40]. Algorithm 3 presents a generic
pseudo-code which describes the main elements of a pattern
search method [41] where we use Nelder-Mead algorithm as
the exploratory search algorithm within each iteration of pattern
search [42].

V. SYSTEM LEVEL PERFORMANCE ANALYSIS

A. Simulation Setup

We employ a LTE 3GPP standard compliant network topol-
ogy simulator [37] to generate typical macro and small cell
based network and user distributions. The simulation parame-
ters details are given in Table III.

We use wrap around model to simulate interference in an in-
finitely large network thus avoiding boundary effect. To model
realistic networks, users are distributed non-uniformly in all the
sectors such that a fraction of users are clustered around ran-

TABLE III
PARAMETER SETTINGS FOR SIMULATION

domly located hotspots in each sector. Monte Carlo simulations
are used to estimate average performance of the algorithms. We
consider five different user traffic requirement profiles corre-
sponding to 24 kbps, 56 kbps, 128 kbps, 512 kbps and 1024 kbps
desired throughput.

B. Results

In this Section, we evaluate the impact of different α val-
ues used in load-aware user association on CLASS along with a
comparison of load-aware user association with state-of-the-art-
maximum RSRP and maximum SINR user association methods.
Using the proposed load-aware user association with best per-
forming α value, we then compare results from 4 Fixed Parame-
ter Settings (FPSs) against the optimal parameter values returned
by both CLASS equations using SQP, genetic algorithm and pat-
tern search to demonstrate their gain. For simplicity, the CLASS
solution in equation (14 a) is henceforth referred to as CLASS1
and solution in equation (14 b) as CLASS2. The results of pro-
posed solutions are further compared with the two algorithms
that are most relevant to this work i.e., the distributed tilt-based
CCO solution presented in [6] and the tilt-based CCO-LB func-
tion given in [32]. It is important to note here explicitly that due
to the use of virtual loads in our system, the user association
from [32] returns undefined results. Therefore, the algorithm in
[32] is implemented using load-aware user association.

1) Impact of Load-aware User Association: The proposed
load-aware user association (11) is dependent on 3 features:
cell loads at the time of association, downlink received power
with CIO and the association exponent α. The impact of cell
loads and received powers on user association are obvious from
(11); however, the impact of exponent value on user association
requires quantitative evaluations of system KPIs for different
values α. A very relevant KPI in this case is the cell load and its
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Fig. 3. Comparison of offered cell load distribution forα values in load-aware
user association.

Fig. 4. Comparison of offered macro cell load distribution for load-aware
(LUA) vs. Max RSRP and Max SINR user association.

Fig. 5. Comparison of offered small cell load distribution for load-aware
(LUA) vs. Max RSRP and Max SINR user association.

distribution among cells for given total traffic in the network. A
lower average cell load and smaller load variance among cells for
given traffic reflects a better performing user association scheme
and vice versa. Though we have performed a comparison of
α ∈ [0, 1] for both CLASS formulations, for brevity Fig. 3 only
presents cell load distribution for α ∈ [ 1

4 , 1
2 ].

From the results in Fig. 3 it can be seen that the load distri-
bution improves and becomes the most compact at α = 7

16 and
starts to spread beyond it. Using α = 7

16 Figs. 4 and 5 present
a comparison of the proposed load-aware user association with
coverage based Max RSRP user association and quality based
Max SINR user association techniques for macro and small
cells.

Fig. 6. Comparison of network utilization and unsatisfied user ratio for load-
aware (LUA) vs. Max RSRP and Max SINR user association.

The results in Fig. 4 show that the proposed load-aware user
association manages to keep macro cell loads within 80%, Max
RSRP keeps macro cell loads to within 60%, while Max SINR
association overloads a number of macro cells due to their
stronger signals. In comparison, Fig. 5 shows that the proposed
load-aware user association technique attempts to distribute load
evenly between macro and small cells, with only a few small
cells marginally overloaded. On the other hand, due to a lack
of load awareness, both Max RSRP and Max SINR association
overload the small cells with more than half the small cells over-
loaded. The even load distribution offered by the load-aware user
association methodology also results in fewer unsatisfied users
i.e., users who are unable to achieve their desired throughput
due to a lack of physical resources at the serving cell.

This is evidenced by the ratio of unsatisfied users in the
network and the utilization of physical resources in the network
given in Fig. 6. We can see that while the load-aware user
association occupies more resources, it is able to minimize the
ratio of unsatisfied users by evenly distributing the load between
cells. On the other hand, the Max RSRP and Max SINR user
association schemes are oblivious to the needs of the users and
blindly associate them with cells offering best coverage and
quality. This leads to cells becoming overloaded and higher
ratio of unsatisfied users. The results in Figs. 4, 5, and 6, also
demonstrate that the flexibility in the design of the proposed
load-aware user association scheme allows it to be an effective
coverage, capacity and load optimization solution, even when
deployed independently in a cellular network.

2) Comparative Analysis of Proposed Solutions:
a) Downlink SINR: To compare the performance of the

two CLASS formulations, we use downlink SINR as the bench-
mark performance indicator. In Fig. 7 we compare the results
for CLASS1 obtained using SQP, genetic algorithm and pat-
tern search against different fixed parameter settings defined in
Table III. The results show that 50th percentile users achieve
14 dB SINR with CLASS1-PS compared to 10 dB for top per-
forming FPS-20. In Fig. 8, the same comparison is presented
for CLASS2 which shows that 50th percentile users achieve
4.5 dB higher SINR with CLASS2 compared to FPS-20. Recall
that using CIOs alone for LB has negative impact on SINR as
demonstrated in Figs. 1(a) and (b). But when CIOs are adapted
through the proposed load-aware user association in conjunction
with transmit power and antenna tilts, we still achieve a gain in



ASGHAR et al.: CONCURRENT OPTIMIZATION OF COVERAGE, CAPACITY, AND LOAD BALANCE IN HETNETS 8791

Fig. 7. Downlink SINR CDF - FPSs vs. CLASS1-genetic algorithm (GA),
pattern search (PS) and SQP.

Fig. 8. Downlink SINR CDF - FPSs vs. CLASS2-genetic algorithm (GA),
pattern search (PS) and SQP.

Fig. 9. Downlink SINR CDF - SOT [6], JOINT1 [32] vs. CLASS1 and
CLASS2.

SINR. This rationalizes the need to include all three optimiza-
tion parameters in the proposed CCO-LB solution, compared to
existing studies which use one or two parameters at a time. An-
other key results to point out here is that the solutions obtained
using genetic algorithm and pattern search perform better for
both CLASS1 and CLASS2 compared to SQP. This is due to
the fact that the genetic algorithm and pattern search attempt
to find the global optimum whereas SQP is a gradient driven
process that is vulnerable to convergence to local extrema.

Fig. 9 compares the best solution obtained for CLASS1 (pat-
tern search) and CLASS2 (genetic algorithm) against the CCO
algorithm proposed in [6] referred to by the authors as SOT, and

Fig. 10. Offered cell load distribution - SOT [6], JOINT1 [32] vs. CLASS1
and CLASS2.

Fig. 11. Offered macro cell load distribution - SOT [6], JOINT1 [32] vs.
CLASS1 and CLASS2.

the CCO-LB algorithm JOINT1 presented in [32]. Results show
that CLASS1 and CLASS2 offer SINR > 10 dB for almost 80%
of users. In comparison, with SOT and JOINT1 only 20% and
30% of users have SINR above 10 dB respectively. We also see
that CLASS1 performs slightly better compared to CLASS2
for cell edge users i.e., the lower half of users with CLASS2
giving slightly better performance for the top half. This is be-
cause of the use of geometric mean in CLASS1 which forces
fairness in all user throughputs, whereas the use of arithmetic
mean attempts to maximize the extreme throughput values.

b) Offered Cell Load: Fig. 10 compares offered cell loads
for CLASS1, CLASS2, SOT and JOINT1. The results show
that for CLASS1, the cell loads range from 10% to 80%, and
from 10% to 70% for CLASS2. This difference is due to the
higher focus of CLASS1 on fairness which means it attempts
to increase throughput of low SINR users by allocating them
more resources compared to CLASS2 which only focuses on
maximizing total throughput. By comparison, SOT shows the
widest disparity among cell loads. This is primarily due to the
fact that SOT is a CCO-only algorithm that only optimizes
antenna tilts, thus highlighting the importance of formulating
LB and CCO jointly with all three parameters. JOINT1 being a
CCO-LB solution that incorporates two parameters i.e., antenna
tilts and CIOs, offers better load balancing compared to SOT,
but is still significantly outperformed by both CLASS1 and
CLASS2.

Figs. 11 and 12 show the performance of the proposed CCO-
LB solution in terms of LB and QoS by showing load distribu-
tions for macro and small cells separately. While none of the
macro or small cells are overloaded by the CLASS solutions,
SOT heavily favors macro cells over small cells for loading
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Fig. 12. Offered small cell load distribution - SOT [6], JOINT1 [32] vs.
CLASS1 and CLASS2.

Fig. 13. Residual cell capacity - FPS-0, FPS-20, SOT [6], JOINT1 [32] vs.
CLASS1 and CLASS2.

causing almost 50% of the macro cells to become overloaded.
Similarly, since JOINT1 only optimizes CIOs and antenna tilts,
it also favors macro cells for load bearing over small cells. An-
other key insight here is that contrary to existing load balancing
schemes [7], [8], [12]–[15], [22]–[26], the proposed solution not
only balances loads between macro and small cells but actually
increases capacity in the system by jointly optimizing soft and
hard parameters, thereby satisfying CCO objective at the same
time.

This is further put into perspective when we observe the resid-
ual cell capacity across the network, as shown in Fig. 14. The
box plots show the median residual capacity value along with
the distance between 1st and 3rd quartiles, whereas the points
inside the box plots signify the mean residual capacity. The aver-
age residual cell capacity of the proposed CLASS1 and CLASS2
solutions are 54.8% and 55.5% respectively, which is 20% more
than the average residual capacity of the algorithm in [6], and
over 45% more than the residual capacity of the algorithm in
[32]. However, the key observation in Fig. 13 is compactness of
the 1st and 3rd quartile, and the outer fences for CLASS solu-
tions compared to the residual capacities of other solutions. The
increased residual capacity creates additional space for tran-
sit users within each cell, a feature that is highly desirable in
ultra-dense HetNets due to the expected high user mobility.

c) Downlink User Throughout: Fig. 14 plots the average
downlink user throughput CDF for all the users in the net-
work with CLASS1, CLASS2, SOT and JOINT1. We observe
a significant gain in user throughput for CLASS1 and CLASS2

Fig. 14. Downlink throughput CDF - SOT [6], JOINT1 [32] vs. CLASS1 and
CLASS2.

Fig. 15. Downlink spectral efficiency CDF - SOT [6], JOINT1 [32] vs.
CLASS1 and CLASS2.

compared to both SOT and JOINT1. Note that the observed gain
in throughput offered by CLASS solutions is despite the fact de-
sired user throughputs are pre-set and that PRBs are allocated
to each user based on that requirement. The observed gain in
throughput occurs due to the user SINR at the time of cell asso-
ciation in calculation of PRBs required to serve a user. The same
PRBs later result in better throughput for the user when the user
SINR improves as a result of the parameter optimization by the
proposed solution. In real system, this throughput increase be-
yond desired user throughput can be controlled by doing SINR
calculations more frequently e.g., using CQI reports.

d) Downlink Spectral Efficiency: Fig. 15 shows the CDF
for downlink spectral efficiency in the network. CLASS solu-
tions provide the highest spectral efficiency. As spectral effi-
ciency is a function of throughput, the same logic as for user
throughput applies here too. However, the impact of SINR on
spectral efficiency is also visible with the plot for spectral effi-
ciency following similar trend as SINR.

C. Performance Analysis of the Proposed CLASS Solutions

The complexity of the proposed CLASS solution depends
on two factors: 1) the execution time of algorithm 1, and 2)
the execution time of the optimization algorithm. The execution
time of algorithm 1 comes out to be O(|U | + 2|C| + 2|U ||C|)
which can be generalized as O(|U ||C|). This means that the
runtime of algorithm 1 increases linearly with increase in the
number of users |U | and cells |C|. Any additional execution time
depends on the optimization algorithm being used. Assuming
genetic algorithm is used to optimize the cell parameters, its
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Fig. 16. Actual vs. fitted runtimes for CLASS algorithms for different values
of G, P , |U | and |C|.

execution time can be obtained from [43], which comes out to
be O(GP ).

Thus, the total runtime of the proposed solution is
O(GP |U ||C|) which is linear in all four variables. This is
also demonstrated in Fig. 16 which shows the experimental
algorithm runtimes for varying values of G,P , |U | and |C|.
Given the computational powers of state-of-the-art network con-
trollers, this execution time is easily manageable. Furthermore,
network operators can use big data analytics, as proposed in [36]
to predict cell loads and obtain optimal parameters proactively
to minimize the impact of computation delay on subscriber QoE.
Apart from this, the implementation of the proposed load-aware
user association requires only one additional multiplication step
on top of calculating RSRP(+CIO) for each UE. This, given the
capabilities of today’s smartphones, is not a significant compu-
tational burden.

D. Practical Implementation of Proposed CLASS Solutions in
Current and Future Mobile Cellular Networks

To implement CLASS solutions in a real network, idle (dis-
connected) users must be informed about cell loads at the time of
association whereas association decision for active (connected)
users will be made by the network based on user measurement
reports and cell load data. State-of-the-art networks have this
information in the form of Total PRB Usage [44], that can act as
a proxy for cell load until a tailor-made measurement is made
available in future standards to implement CCO and LB.

Also, to successfully balance cell loads across the network,
it helps to generate and leverage user traffic prediction model.
Most existing operators already construct some form of this
model on their own. Current standardization includes a traffic
classification parameter called Number of Active users in the
DL per QCI [44]. This measure can act as proxy for expected
data rate and or QoS requirements until a custom measurement
to facilitate CCO-LB and other SON function that can benefit
from intelligence of QoS expectations, is standardized for future
networks.

Moreover, in this paper, we considered same maximum load
threshold ηc

th = 100% for all cells. However, in real networks
and in advanced implementation of proposed CCO-LB, setting
individual cell load thresholds can be useful in scenarios, where

different cells are known to have different user arrival rate,
sojourn times and traffic statistics. This can also be useful, where
the power consumption model of the BS in different cells are
different and loading points that return optimal energy efficiency
in individual cells are different.

VI. CONCLUSION

In this paper, we presented a framework for joint CCO and
LB SON functions with transmit powers, antenna tilts and CIOs
as the optimization parameters. The proposed CCO-LB solu-
tion (CLASS) not only provides significant gains in terms of
downlink SINR and throughput, it also provides balanced dis-
tribution of cell loads in a heterogeneous network which is key
to meeting overall resource efficiency demands. We also show
that the key metrics for quantifying gains for the joint CCO-LB
function are not merely user SINR, or throughput or spectral
efficiency, but also, and most importantly, the amount of free
resources in the network after all users are satisfied, what we
call residual capacity. Maximization of residual capacity is the
key to achieving temporal stability in the network optimization
process due to the acute mobility dynamics of HetNets. Further
gain in throughput and spectral efficiency may become possible
by softening the constraint of desired user throughput and by
incorporating scheduling level decisions in the future. Neverthe-
less, the proposed CCO-LB solution substantially outperforms
the comparable algorithms proposed in literature for all KPIs
without exception because unlike prior works: 1) it exploits
joint optimization of all three parameters that influence cover-
age and cell association; thus in addition to just shifting load,
it shifts load in a way that increases overall system capacity; 2)
it leverages a smarter load aware cell association mechanism,
and 3) though the objective function targets throughput maxi-
mization and thus aims for CCO, the formulation is designed
to incorporate LB in the objective function itself through use
of geometric mean. This yields better results compared to so-
lutions that target CCO and take LB as a constraint and vice
versa, because a goal included as constraint is likely to yield
acceptable but not optimal results.

The joint CLASS formulation presented in this work can pave
the way for several future studies and SON function develop-
ments. For example, it is possible to incorporate energy effi-
ciency (EE) and mobility robustness optimization (MRO) SON
functions into the formulation by setting the load thresholds for
intelligently selected cells to zero based on user mobility and
activity profiles. Incorporation of big data aided knowledge like
optimal cell load thresholds for each cell by considering spatio
temporal prediction of oncoming traffic is another promising
research direction.

APPENDIX A

The dowlink received power based on standard exponential
pathloss model with Gaussian distributed shadowing for user u
associated with cell c is:

Pc
r,u = Pc

t GuGc
uδ

c
ua (dc

u )−β

Due to the randomness of δc
u , the coverage constraint of user

u i.e. Cu := Pc
r,u ! Pc

th becomes a function of δc
u such that

for user u, the coverage constraint will be satisfied with some
probability i.e. Pr(Pc

r,u (δc
u ) ! Pc

th). We can then calculate the
minimum value of δc

u above which the coverage constraint for
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an individual user will be satisfied.

Pr
(
Pc

t GuGc
uδ

c
ua (dc

u )−β ! Pc
th

)

Pr

(
δc
u ! Pc

th

P c
t GuGc

ua (dc
u )−β

)
(19)

Based on the assumption that δc
u has a Gaussian distribution,

the value of δc
u inside the parentheses in (19) gives the Z-score

below which the coverage constraint of an individual user will be
violated. If p gives the probability Pr(δc

u ! P c
t h

P c
t Gu Gc

u a(dc
u )−β

),
we can remodel the event that a user is inside the coverage of
its serving cell as a Bernoulli variable with probability p.

The consequence of modeling Pr(Pc
r,u ! Pc

th) as a Bernoulli
random variable is that the network coverage C can be modeled
as a Binomial random variable with chance of success p per
user. Thus the probability of having ϖ ∗ |U | users or more in
coverage can be given as:

Pr(k ! ϖ ∗ |U |) !
|U |∑

i=ϖ ∗|U |

(
|U |
i

)
pi(1 − p)|U |−i (20)

If the desired value for Pr(k ! ϖ ∗ |U |) −→ 1, and ϖ −→ 1,
then

lim
ϖ−→1

P r(k!ϖ ∗|U |)−→1

p = 1

In such a scenario, we can substitute the probability p with the
indicator function 1(.), thus giving us the following formulation
for constraint (i):

1
|C|

∑

C

1
|Uc |

∑

Uc

1
(
Pc

r,u ! Pc
th

)

APPENDIX B

The simplified form of the SINR function in antenna tilts is
given as:

γc
u =

10µ
(
(ψ c

u −ψ c
t i l t )

2
+xc

u

)

κ+ 10µ
(
(ψ i

u −ψ i
t i l t )

2
+xi

u

)

The expression for antenna gains expressed as a function of tilts
is given as:

Gc
u = 10µ

(
(ψ c

u −ψ c
t i l t )

2
+xc

u

)

We treat xc
u and µ as constants and assign then unit value and

−1.2 respectively which gives us the resulting function of ψc
tilt :

f(ψc
tilt) = 0.0631 ∗ 10−1.2(ψ c

u −ψ c
t i l t )

2

Taking derivative of f(ψc
tilt) gives us:

f ′(ψc
tilt)= 0.0631ln (10) ∗10−1.2(ψ c

u −ψ c
t i l t )

2∗ (2.4(ψc
u − ψc

tilt))

Taking the second derivative:

f ′′(ψc
tilt) = 0.3634ln (10) ∗ 10−1.2(ψ c

u −ψ c
t i l t )

2

∗ [(ψc
u − ψc

tilt)ln (10) − 0.417]

For a function to be convex, the second derivative has to
be non-negative which is only possible in the range [(ψc

u −
ψc

tilt) " −0.4254, (ψc
u − ψc

tilt) ! 0.4254]. Hence, the antenna
gain function is a non-convex function and by extension, the
SINR expression with antenna gain is non-convex.
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