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Abstract—Escalating cell outages and congestion—treated as
anomalies—cost a substantial revenue loss to the cellular opera-
tors and severely affect subscriber quality of experience. State-
of-the-art literature applies feed-forward deep neural network
at core network (CN) for the detection of above problems in a
single cell; however, the solution is impractical as it will overload
the CN that monitors thousands of cells at a time. Inspired from
mobile edge computing and breakthroughs of deep convolutional
neural networks (CNNs) in computer vision research, we split
the network into several 100-cell regions each monitored by an
edge server; and propose a framework that pre-processes raw
call detail records having user activities to create an image-like
volume, fed to a CNN model. The framework outputs a multi-
labeled vector identifying anomalous cell(s). Our results suggest
that our solution can detect anomalies with up to 96% accuracy,
and is scalable and expandable for industrial Internet of things
environment.

Index Terms—Self-Organizing Networks, Self-Healing Net-
works, Call detail record, Deep learning, Convolutional Neural
Networks, Big data analytics.

I. INTRODUCTION

DRIVEN by ever increasing mobile data traffic, number

of connected mobile devices per capita [1], [2], and

network capacity demand, current communication networks

(4G) are becoming more complex and a quagmire to manage.

It is indisputable that emerging wireless networks (5G) will be

artificial intelligence (AI)-assisted and AI will play a crucial

role in the management and orchestration of network resources

[3]. Big Data [4] for AI algorithms are analogous to fuel for

an engine, and are generated at the core network (CN), cell,
and subscriber levels of a cellular network (delineated in [5]).

Big Data analytics using advanced machine learning (subset

of AI) algorithms is envisioned to be the key innovation and

integral part of 6G communication ecosystem [6].

Network operators are facing challenges in reducing the

operational expenditure (OPEX) while maintaining adequate
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quality of service (QoS) for their subscribers. There are

essentially two types of expenditures for the cellular network

operators to bear: capital expenditure (CAPEX) which refers

to acquisition and modernization of network entities, and oper-

ational expenditure (OPEX) which refers to the amount spent

on management and maintenance of the cellular network’s

operations [7]. One of the major reasons for heightening

OPEX and revenue loss is the escalation of network faults that

result in outages. In fact, network maintenance and operation

cost roughly one-fourth of the total revenue, out of which a

significant portion is dedicated to cell outage—full, indicates

a complete dysfunction of a cell and partial, means cellular

service deterioration—management [7]. The faults and outages

are likely to magnify in 5G networks due to the implemen-

tation of small cells; making it arduous to manually manage

the outages by heavily depending on the human experts, as is

done in current cellular networks [7]. Network faults can occur

due to hardware malfunctions, software problems, functional

resource failures, loss due to overload situations, or communi-

cation failures [8]. Self-healing is one of the four functions of

self-organizing network (SON) [7] that can perform automatic

detection of cellular outages and performance degradations,

their root-cause analysis, and compensation of outage affected

cells until the full recovery. It can play a decisive role in

cutting down the OPEX by minimizing network outages and

system downtime with least human intervention.

Besides outages, a cell can have an unusually high traffic

demand at any time that could cause congestion if befit

measures are delayed [9]: partial load offloading via neigh-

boring base stations (BSs) [10] or enabling device-to-device

(D2D) relay networks [11], [12], extra resource allocation

[9], dynamic pricing especially in QoS-enabled networks

[13], etc. The role of congestion detection becomes crucial

during crowded events (sport matches, public demonstrations,

vehicular traffic jams, etc.) having a surged traffic and capacity

demand: network performance usually degrades due to a

drastic change in population distribution, application workload

and user behavior [14]. As a consequence, congestion occurs

with denied user services (in the form of high connection

timeouts and failures) due to scarce radio resources. Poor

network performance can affect huge number of subscribers

in such situations and can result in serious revenue loss in

terms of increased churn rate. Hence, prompt detection of

soared traffic and cell outage—both treated as anomalies in our

paper and henceforth referred as so unless explicitly mentioned
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Fig. 1. AI-powered MEC-based anomaly detection framework. (a) System
model: call detail record (CDR) dataset is generated at the core network (CN)
of a long term evolution-advanced (LTE-A) network. The cellular network is
divided into two sub-grids (blue and green cell clusters), each having 4 base
stations (BSs) and an edge server (ES 1 or ES 2) co-located with one of the
BSs. Note, although we experiment using a sub-grid comprising 100 cells
in this paper and a city can be divided into tens or even hundreds of such
sub-grids, depending on the size of cells and city; in this figure for clarity,
we only show two sub-grids each comprising 4 cells. For every subsequent
time-interval (10-min), the CN shares raw CDRs of every cell in a sub-grid to
its corresponding ES that processes them for anomaly detection. The ES then
reports the cell ID of an anomalous cell (having a red inner hexagon) to CN for
further curative actions. (b) The framework installed in the ES converts raw
CDR data into a grid-image (pre-processing), deploys convolutional neural
network (CNN) model to identify an anomalous cell(s) using the database
(containing training samples) and forwards the information to the CN.

otherwise—is vital to avoid congestion, retain acceptable QoS,

and recover a cell in time.

Past studies [7], [15] utilize various traditional machine

learning techniques for cell outage detection (COD) ; however

only [16] fully exploits more powerful technique known as

deep learning (DL) [17], in which the authors utilize a feed-

forward deep neural network (DNN) at the CN to detect

anomalies in a single cell. A 5G network is anticipated to

have 40–50 BSs/km2 [18]; as an example, Milan, Italy (total

area of 181.76 km2) may require 7, 270−9, 088 BSs for full

coverage. To detect anomalies for such a high number of BSs

using this solution, the CN might computationally overload.

Additionally, a major limitation of using a feed-forward DNN

is the requirement of copious amount of resources: computa-

tion power and storage; because, fundamentally each unit in

a layer of the neural network is connected with each unit of

the previous layer requiring huge amount of parameters to be

processed and stored.

Inspired from the breakthroughs of deep convolutional neu-

ral networks (CNNs) in computer vision research [19] and

mobile edge computing (MEC), we propose a novel framework

for anomaly detection that eases CN in terms of computational

load and also consumes lesser computational resources as

compared with the state-of-the-art DL-based cellular network

anomaly detector [16]. We assume a peculiar cellular traffic

pattern can well reflect the anomaly—unusually low user traf-

fic activity indicates a cell outage or performance deterioration,

and unusually high traffic signals a potential congestion—and

therefore, we utilize call detail records (CDRs) to detect the

anomalies. Instead of processing the subscriber activities of

all cells at CN, the computation-intensive tasks are distributed

among different edge servers (ESs) (co-located with BSs) that

target a subset of the total cells (see Fig. 1). Additionally,

ESs perform data analytics using CDR dataset and are AI-

powered: unlike the previous study in which quintessential

(feed-forward) DNNs were utilized, we exploit the power

of CNNs that are more efficient (discussed in Sec. IV-A).

The information about identified anomalous cell(s) is then

dispatched from ES to the CN for further remedial actions

under self-healing (if cell outage occurred) or congestion-

prevention mechanism (if soared user activity is detected). We

can holistically relate our framework with MEC paradigm in

which CN acts as cloud server (having centralized computation

and processing from network’s perspective) and ES acts as a

MEC server (offering decentralized architecture for storage,

computation and connectivity) [20].
Following are the salient contributions of this study:

1. Employs a novel MEC-based framework to detect

anomalies in a grid of cells by exploiting real net-

work CDR data and the power of CNNs.

2. Deploys a very deep CNN model called residual

network comprising 50 layers (ResNet-50) that yields

additional performance as compared with a relatively

simple model inspired from various classical CNN

models, and analyzes both models in terms of per-

formance and training time.

3. Detects surged user traffic activity that can act as an

early-warning against congestion in a cell, in addition

to the anomalies pertaining to cell outages.

The rest of paper is organized as follows. Relevant work

is summarized in Section II. Preliminaries to our proposed

framework are explained in Section III. Framework’s imple-

mentation is described in Section IV. Subsequently, results

and framework’s performance evaluation are discussed in Sec-

tion V. Finally, discussion on results, future insights including

feasibility of our framework for industrial Internet of things

(IIoT) environment and cloud radio access network (C-RAN)

architecture, and concluding remarks are drawn in Section VI.

II. RELEVANT WORK

In this section, we discuss works related to COD focusing

on utilizing DL technology and the works related to congestion

detection. Readers can refer to [7] for an exhaustive literature

survey on COD, in which the survey is divided to cover full

and partial CODs, each focusing on works utilizing: Heuristic

(solutions that utilize pre-defined rules dictated by the experts)

and learning based (solutions based on machine learning)

methodologies. In addition, Kline et al. [15] also discuss works

related to COD in which machine learning techniques are

utilized. However, both [15] and [7] lack works that have

leveraged DL technology for COD.
Hussain et al. [16], [21] proposed a framework that utilizes

feed-forward DNN to detect anomalies in a single cell of a

cellular network. It pre-processes real CDRs to extract a 5-

feature vector corresponding to user activities of a cell, that it
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accepts as an input. The output is a binary number indicating

0 as normal and 1 as an anomaly. However, the solution is

computationally expensive if applied to the whole network

because of the reasons mentioned in the previous section.

Masood et al. [22] presented a deep autoencoder (type of

feed-forward DNN) based sleeping cell—a special case of a

cell outage that occurs without triggering any alarm—detector

that leverages minimization of drive test (MDT) measurement

data generated by user equipments using a simulator. The data

consist reference signal received power (RSRP) and signal

to interference plus noise ratio (SINR) of neighboring and

serving BSs. The model was trained on data obtained from

normal operation with 7 macro cells and testing was done on

data from outage scenario. Main issue with their approach, as

also indicated in [7, Sec. IV C], is they only considered spatial

data gathered for one time instance that results in instantaneous

sleeping cell detection. Hence, the detected anomaly could be

momentary, having little impact on QoS, and may vanish by

the time it is compensated.

It is interesting to note that both, Hussain et al. [16]

and Masood et al. [22] claimed their deep learning based

approaches for anomaly detection eclipsed conventional ma-

chine learning approaches: semi-supervised statistical-based

detection [23] and one class support vector machine based

detection, respectively. This is the rational behind our inclina-

tion towards preferring deep learning models over traditional

machine learning models.

Ramneek et al. [13] presented an analytical solution for

congestion detection, as part of their paper, in QoS-enabled

networks. The main idea is to monitor load on the network, by

utilizing information extracted from the QoS-based scheduler,

to determine the congestion level. Parwez et al. [9] proposed

a technique using big-data (CDR) analytics and machine

learning algorithms to identify region of interests (ROIs) as an

anomaly that have unusually high user traffic activity. Since

they analyzed CDRs of one week for the detection, their

approach is impractical for systems that demand prompt de-

tection. Overcoming this limitation and building upon the idea

that such ROIs can have congestion if appropriate measures

are delayed, Hussain et al. [23] proposed a semi-supervised

machine learning algorithm to detect soared user traffic activity

in past one hour CDR data of a cell, by analyzing its past

user activity behavior. Cutting down detection cycle from one

hour to 10 minutes and further enhancing the performance, the

authors in their following work [16] proposed DL approach for

the identification of such ROIs.

In contrast to all the above works, our approach is differ-

ent as it provides a lighter solution for anomaly detection

by utilizing deep CNNs instead of feed-forward DNNs and

MEC-based architecture to divide computational load of CN

among different ESs. Utilizing existing (CDR) data instead of

requesting additional KPI-based data also makes our approach

agile [23]. It detects both anomalies (outage and surged traffic

activity that may lead to congestion) and in multiple cells

at a time. Our approach also considers both, spatial and

temporal dimensions leading to the detection of long-term

outages instead of the instantaneous ones.

Fig. 2. Spatial description of our dataset: It is spread over a 117 × 98
(Trentino) grid, located in northern Italy. (Top-left) The grid is overlaid with
Italy’s map using its GPS coordinates. (Top-right) The grid is zoomed-in for
clarity. Our dataset contains user-activities of a total number of 6259 cells,
highlighted by the larger blue region. We chose 10 × 10 sub-grid for our
experiments, shown in red; while to proof scalability of our method, we chose
15× 15 sub-grid, shown in inner light-blue region. (Bottom) The sub-grid is
zoomed-in for clarity. It consists of 100 cells, each having a side length of 1
km.

III. PRELIMINARIES

A. System Model and Description of the Dataset

The system model is shown in Fig. 1(a). It is based on

long term evolution - advanced (LTE-A) mobile network ar-

chitecture (described in [9, Fig. 1]). The CDR dataset utilized

in this study was generated at LTE-A’s CN and made public

by Telecom Italia as part of their big data challenge [24].

The main idea is to divide a network into regions called sub-

grids, each consisting 100 cells and an edge server (ES) co-

located with one of the BSs. The ES is equipped with our

proposed anomaly detection framework that mainly handles

preprocessing and comprises a deep CNN model. For every

subsequent 10-min duration: 1) the ES acquires raw CDR data

of each cell in its sub-grid from the CN; 2) the framework pre-

processes the data to construct a grid-image that is acceptable

as an input by the deep CNN model; 3) the model trains on

a dataset (available in the attached database) containing past

user behavior of the cells and detects anomalous cell(s) in

the current example; 4) finally the ES passes information of

the faulty cell(s) to the CN that further takes curative actions

(mentioned in Sec. I). The process is shown in Fig. 1(b).

The data are geo-referenced and designed in spatio-temporal

manner; they contain over 171.4 million logs for 6259 cells

spread over a 117 × 98 grid (known as Trentino grid) in

Trentino province, Italy [24]. Each cell has a side length of

approx. 1km. We have mapped the spatial locations of the grid

and cells according to their GPS coordinates, delineated in
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Fig. 2. The dataset is temporally split into 10-min timestamps

for a 62-days duration (comprising of a single file for each day)

from 1/11/2013 to 1/1/2014. On average, 2.76 million logs

per file are present and each log contains the following user

activity values: call incoming, SMS incoming, call outgoing,

SMS outgoing and Internet usage. Some subscriber-related

details—such as, location, phone number, and exact unit (or

number) of activity—are excluded for privacy preservation.

However, the available amount of activities is proportionate

to the real quantity of activities [23]. Sample of similar raw

CDRs can be observed in [9, Fig. 2].

B. Data Preprocessing and Synthesis

CNN processes grid-like data such as a time-series or an

image [25, Ch. 9]. In preprocessing stage, we convert raw

CDRs into a 10×10×5 3D matrix x(i) ∈ R
n
[0]
H ×n

[0]
W ×n

[0]
C

henceforth referred as “grid-image”, where i is the index,

n
[0]
H is the height, n

[0]
W is the width, and n

[0]
C is the number

of channels of the grid-image. The height and width make

up 100 entries representing cells chosen from the bottom

portion of the Trentino grid, illustrated as red squares in

Fig. 2. The channels comprise 5 feature (subscriber activity)

values of the selected cells: Call incoming, SMS incoming,

call outgoing, SMS outgoing, and Internet usage. Hence, each

pixel of the grid-image contains the above activity values

of a corresponding cell, recorded during a 10-min duration.

In order to excavate meaningful pattern in the dataset, an

avalanche of examples each representing past instances are

required; however, only 62 instances are available in the

current dataset for each time-resolution. To remedy this, we

combine timestamps for a 3-hour duration and generate 1,116

grid-images (6 timestamps per hour × 3 hours × 62 days),

represented as a 4D matrix Xtotal ∈ R
m×n

[0]
H ×n

[0]
W ×n

[0]
C , where

m is the total number of grid-images.

Since we are dealing with supervised learning and have

unlabeled data, we generate labels Ytotal ∈ R
m×100 on the

basis of euclidean distance, where 100 represents the total

number of output classes (each denoting a cell). An output

class indicating 1 means an anomaly and the corresponding

cell is faulty, and 0 means the corresponding cell’s operation

is normal. For each output class, we mark 1 if ‖μ − σ‖2 >
‖a‖2 > ‖μ+σ‖2, where a ∈ R

5 represents the corresponding

cell’s activity. The elements of mean μ ∈ R
5 and standard

deviation σ ∈ R
5 can be calculated using standard textbook

equations [23, Eq. 1, 2].

C. Shuffling and Splitting the Data

The order of Xtotal and Ytotal is synchronously shuffled

to make the algorithm more effective since it is using mini-

batches (a subset of the entire dataset). The mini-batches en-

able the optimization algorithm (mini-batch gradient descent)

to rapidly compute approximate gradient estimates instead

of computing exact gradient, making the algorithm converge

faster [25, Ch. 8]. The shuffled dataset is then split into training

and test sets according to a ratio of 7:3, each comprising 781

and 335 grid-images with labels, respectively.

D. Performance Metrics

For the performance evaluation of our framework, we

utilized the following common metrics of machine learning

literature: precision, recall, accuracy, error rate, false positive

rate (FPR), and F1. Readers can refer [23] for a contextual

explanation of these metrics.

E. Software

MATLAB was exploited for preprocessing, GPS mapping,

and results generation. Keras [26] was also utilized to actu-

alize the CNN models. Experimentation was performed in a

commercial PC (i7-7700T CPU, 16GB RAM, and Windows

10 64-bit operating system) with an in-built GPU (NVIDIA

GeForce 930MX).

IV. IMPLEMENTATION OF ANOMALY DETECTOR

In this section, we describe generic architecture of the CNN

followed by a discussion on how it fits in with our research,

the architecture’s utility in building a relatively simple deep

CNN model and lastly, we describe the ResNet-50 model.

A. CNN’s Generic Architecture

CNN [25, Ch. 9] has the following three fundamental layers,

as can also be found in Fig. 3(a):

1) Convolution layer: accepts an input volume (or acti-

vations of previous layer) A[l−1] ∈ R
m×n

[l−1]
H ×n

[l−1]
W ×n

[l−1]
C ,

where l represents number of the current layer; and filters

F [l] ∈ R
f [l]×f [l]×n

[l−1]
C ×n

[l]
C , where f [l] is the filter size,

f [l] × f [l] × n
[l−1]
C is the dimension of a single filter and n

[l]
C

is the total number of filters. The convolution layer performs

parallel convolution operations between input volume and each

filter, adds bias, applies a rectified linear unit (ReLU) [25, Sec.

6.3] function and lastly, stack up each result to form an output

A[l] ∈ R
m×n

[l]
H×n

[l]
W×n

[l]
C . The height n

[l]
H can be calculated as:

n
[l]
H = �n

[l−1]
H + 2p[l] − f [l]

s[l]
+ 1� (1)

where, p[l] is the number of padding and s[l] is the stride.

Padding is a technique to add zeros around the border of the

input image to prevent the height and width from shrinking,

as output dimension reduces due to convolution operation.

Stride is the distance between successive utilization of filter

on the input volume. Formula for width n
[l]
W can be written

by replacing n
[l−1]
H with n

[l−1]
W in Eq. 1.

2) Pooling layer: improves computational efficiency, re-

duces requirement for storing parameters and adds robustness

to some of the detected features [25, Sec. 9.3]. Max function

is commonly utilized in pooling layers that pools maximum

numbers from regions of input volume (and from each channel,

independently) depending on the filter size f , to generate

the output volume. If the dimension of input volume is

nH×nW×nC , the dimension of output volume can be derived

using Eq. 1 with p = 0 as �nH−f
s +1�× �nW−f

s +1�× nC .

As an example, we consider MaxPool1 layer, illustrated in

Fig. 4(a). The pooling layer accepts an input volume having

13 × 13 × 8 dimension and results a volume of 6 × 6 × 8
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Fig. 3. CNN models. (a) The simple CNN model accepts an input volume having features’ values of 100 cells. Conv1 − Conv3 represents convolution
layers, each executing convolution operation, batch normalization and ReLU activation function. MaxPool1 − MaxPool3 represents the pooling layers
utilizing a max function. FC1 and FC2 are fully connected layers. The output is a multi-label classifier having 100 classes, each representing a corresponding
cell of the sub-grid in Fig. 2(bottom). Output dimension of the convolution and pooling layers are computed using Eq. 1. Note, the input volume consists
of a single example (grid-image) for clarity. Readers can refer to Sec. IV. A. 2 for the working of MaxPool1 layer, highlighted as red rectangle. (b) The
residual network model with 50 layers accepts the input volume. After ZeroPadding, the information flows through different phases. Phase 1 consists
of a convolution layer, followed by batch normalization (BN) and ReLU activation functions, and a (Max) pooling layer. Phase 2 − Phase 5 stacks the
two residual modules in a linear fashion. After flattening the output of last phase, we implement a fully connected layer and finally the output layer. (c) The
residual modules, convolutional (Conv) and identity (ID), are shown along with the skip connections and the main paths for the flow of information. Each
module consists of three hidden layers. The number of filters used in the layers [F1, F2 and F3] of each module are listed in Table I. Note, the output
dimensions shown in green are designated for phase 2 only.
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Fig. 4. Operation of a Max-Pooling Layer

dimension—the height and width is calculated by using Eq. 1.

The layer utilizes following hyperparameters: filter size f = 2
and stride s = 2. This combination of hyperparameter values

is common and it shrinks the input’s size by a factor of 2.

For simplicity, we demonstrate the max pooling operation in

a single channel, illustrated in Fig. 4(b). The layer slides a

(f, f) window over input and stores the maximum value of

the window in the output. It performs the same operation for

each channel and finally stacks the results to form the output

volume.

3) Fully connected layer: functions like the hidden layer of

a feed-forward neural network (described thoroughly in [16]),

in which each hidden unit is connected to all hidden units of

the previous layer.

B. Why Choose CNN?

Parameter sharing and sparse interactions [25, Sec. 9.2] are

the main reasons for CNN’s popularity and dramatic increase

in computational efficiency as compared with feed-forward

neural networks; because these result in lesser parameters to

compute and store. For example, consider a convolution layer

Conv1 in Fig. 3(a) having an input volume of dimensions

14 × 14 × 5, a filter size f = 2, and 8 number of filters.

Using Eq. 1 with p = 0 and aforementioned values, we can

calculate the dimension of output volume: 13 × 13 × 8. The

total number of parameters utilized in this (single convolution

layer) operation is 40: 2 ∗ 2(for one filter) +1(for bias) = 5
parameters per filter and 40 parameters for 8 filters. However,

if this was a feed-forward neural network, the input would be

980 units (flatten version of the input volume: 14∗14∗5), the

output would be 1352 units (13∗13∗8), and the total number

of required parameters would be 1.32 million (980 ∗ 1352).

CNN is hence faster and require lesser resources (computation

and storage). Due to the mentioned benefits and the fact that

we are dealing with grid-like data (of 100 cells), CNN is our

natural choice.

C. Simple CNN Model

Many models available today have put together the building

blocks in different settings (in terms of number of layers and

the approach of connecting them together) to form a CNN.

LeNet-5 [27], AlexNet [28] and VGG [29] are some of the

classical CNN models; while ResNet [30] and Inception-v4

[31] represent some modern ones (readers can refer to [26, Sec.

Applications] for an exhaustive list of modern CNN models).

Our first approach, illustrated in Fig. 3(a), is inspired from

works of the aforementioned classical models, in which we

utilize the building blocks in addition to batch normalization

(thoroughly explained in the next paragraph) to detect anoma-

lies. Our model accepts a 10× 10× 5 grid-image as an input.

It then pads zero along the edges (zero-padding) with p = 2
and passes the volume to a series of convolution and pooling
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layers (Conv1, MaxPool1, Conv2, MaxPool2, Conv3,

MaxPool3). The dimension of output volume of each layer

can be computed by utilizing Eq. 1. The resultant volume is

finally flattened and passed through two fully connected layers

(FC1 and FC2). Finally, we utilize binary cross entropy

loss function for a multi-labeled output as each class is not

mutually exclusive.

Batch normalization (BN) [32] is a powerful technique of

adaptive re-parametrization, used to accelerate training process

and make DNN more robust. Training a DNN leads to a

problem of covariance shift: distribution of earlier layers’

parameters shifts, that affects the later layer’s capability to

adopt accordingly and results in a slow training process.

Instead of just normalizing the input features values of the

network, the technique normalizes the activations of each

hidden layer. It makes the deeper layers’ parameters more

robust to changes, to earlier layers’ parameters; hence, en-

hancing the network’s stability [25, Sec. 8.7], [32]. Readers

can refer to [33] for more detailed analysis on BN. We apply

BN after the convolution operation and before utilizing the

activation function. Therefore in Fig. 3(a), each convolution

layer incorporates BN in addition to convolution operation and

ReLU activation.

D. Residual Network Model

To enhance the performance of our framework, we utilized

residual network comprising 50 layers (ResNet-50), as shown

in Fig. 3(b). Depth of a neural network plays a crucial role in

accurately representing more complex functions and in raising

the overall network’s performance [29]. However, deeper net-

works are harder to train as they suffer from gradient vanishing

and exploding problems [25] that hinder with the convergence

of the network, making it unbearably slow. Deeper networks

also suffer from a degradation problem: as we add more layers

the accuracy saturates and then quickly reduces, leading to an

elevated training error [30].

Residual network [30] effectively deals with these problems

by stacking residual modules on top of one another, shown

as Phase 2 − 5 in Fig. 3(b). We first elaborate functioning

of a residual module used in the residual networks by using

ID module of Fig. 3(c). In the figure, the information flows

from input a[l] to the output activation a[l+3] through two

unique paths. The downward path, called main path, has three

parts. The information first goes via initial part consisting

three blocks having a convolution layer, BN, and a non-linear

activation function, respectively; governed by the following

standard equations:

z[l+1] = W [l+1]a[l] + b[l+1] (2)

a[l+1] = g(z[l+1]) (3)

where, W [l+1] is the weight matrix, b[l] is the bias vector, g(.)
is the non-linear activation function, a[l] is the input, and a[l+1]

is the output of the initial part. The BN is utilized throughout

the model to boost up the training.

Similarly, the blocks in the third part are governed by the

following equations (ignoring the other path and a summation

operation):

z[l+3] = W [l+3]a[l+2] + b[l+3] (4)

a[l+3] = g(z[l+3]) (5)

In residual networks, a[l] is fast-forwarded to a deeper

hidden layer in the neural network where it is summed up with

the output of that layer before applying a non-linear activation

function. This is known as a skip connection, as shown in the

figure. Hence, Eq. 5 will be altered as follows:

a[l+3] = g(z[l+3] + a[l]) (6)

The addition of a[l] makes it a residual module and this

enables the activations of one layer to skip some layers and

be directly fed to a deeper layer. This also allows a gradient

(during back-propagation) to be directly back-propagated to

an earlier layer. Here, we are assuming that the dimensions

of both, input a[l] and z[l+3] (and therefore output a[l+3]) are

same in order to perform the summation. This kind of residual

module is known as identity (ID) module.

If the dimensions of input (a[l]) and output activations

(a[l+3]) mismatch then a convolution layer in the skip con-

nection is introduced to adjust the input a[l] to a different

dimension, so that the dimensions match up in the final sum-

mation. This type of residual module is called Convolutional

(Conv) module, illustrated in the Fig. 3(c)(left).

Moreover, we can now analyze the residual network archi-

tecture with 50 layers depicted in Fig. 3(b). As an example, we

can concentrate on the parts starting from the input to Phase2
of the architecture. In the following, we will discuss in term of

dimensions so that the purpose of ID and Conv modules can

be explained subsequently; and Eq. 1 is extensively utilized

in computing the output dimensions of various layers. The

input grid-image having dimension 10×10×5 is zero-padded

with padding p = 5 to have an output volume with dimension

20 × 20 × 5. It is then passed to Phase1 comprising a

convolution layer with filter size f = 7, total number of filters

nC = 64, and stride s = 2; that transforms the dimension to

7×7×64. Lastly, Max Pool having f = 3 and s = 2 generates

the output volume with dimension 3× 3× 64.

For Phase2, let’s focus on Fig. 3 (c)(left) having Conv

module that will have an input dimension of 3× 3× 64 from

the earlier layer. The main path contains 3 parts. The initial

part has convolution layer having f = 1, nC = F1 = 64 (see

Table I), and s = 1. It yields volume with identical dimensions

as of the input’s. The convolution layer in the second part also

results output with same dimension as of the input’s because it

is utilizing “same” convolution (in which padding is set so that

the output’s dimension remains same as of the input’s). The

third part having a convolution layer with f = 1, nC = F3 =
256 (see Table I), and s = 1 will convert the input’s dimension

from 3 × 3 × 64 to 3 × 3 × 256. Finally, convolution layer

in the skip connection, that has input volume of dimension

3× 3× 64, scales up the input’s dimension to 3× 3× 256 by

utilizing the parameter values: f = 1, nC = F3 = 256 (see

Table I), and s = 1. The outputs from both convolution layers

(one in the skip connection and the other in third part of the
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Fig. 5. Performance distributions. Accuracy (blue) and false positive rate (FPR) (green) distributions of our simple CNN (left) and ResNet-50 (middle) models
are displayed in the heatmaps. The best and worst performance values are marked in black annotations. The right heatmaps display improvements we got
for each cell by implementing ResNet-50 model instead of the simple model (negative values indicate degradation in the relevant performance metric). The
annotations in right heatmaps represent maximum improvements and degradations. Note, each item in a heatmap corresponds to the cell of the sub-grid in
Fig. 2(bottom). The models were executed for 200 epochs.

TABLE I
HYPERPARAMETERS USED IN OUR RESNET-50 MODEL

Phase Number of filters used in the
layers [F1, F2, F3] of each module Stride s

2 [64, 64, 256] 1
3 [128, 128, 512] 2
4 [256, 256, 1024] 2
5 [512, 512, 2048] 2

main path) can be added as they are now compatible: have the

same dimensions.

The ID modules of Phase2 have similar function as of the

aforementioned Conv module, with the exception of the skip

connection’s design that does not has any layer in it. This is

because the input of the ID modules has same dimension as of

the output of convolution layer in it’s third part: 3× 3× 256;

hence, convolution layer is not needed in the skip connection.

The hyperparameter values used in our model can be found

in Fig. 3(b) and (c) (in red annotations), and Table I.

V. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATION

We demonstrate performances of our simple CNN and

ResNet-50 models in Fig. 5 using the test set. The figure

shows 10 × 10 heatmaps: blue ones representing accuracy

distributions and the green ones representing false positive

rate (FPR) distributions; with the left, middle and right ones

pertaining to the simple model, ResNet-50 model and improve-

ments we achieved by implementing ResNet-50 over simple

model, respectively. Each position in a heatmap relates to a

corresponding cell of the sub-grid in Fig. 2(bottom). The best

and worst performance values in the left and middle heatmaps

are marked in black annotations, while the annotations in right

heatmaps represent maximum improvements and degradations.

As we can observe in the figure that the performance results

pertaining to different cells vary; this is because fundamentally

each cell has it’s own unique distribution of user activity

values in terms of call incoming, SMS incoming, call outgoing,

SMS outgoing, and Internet usage, from which our framework

creates grid-images. The model learns different underlying

distributions and hence the performance result for each cell

is different.

The accuracy of cell 2976 (row 1, column 7)—the worst

performing cell—using the simple model is significantly im-

proved from 68.4% to 75.5% by using ResNet-50 model. Cell

3915 (9, 10) yielded maximum accuracy 94.3% using simple

CNN, and is slightly further improved to 95.5% using ResNet-

50 model. Additionally, the maximum and minimum FPRs

using the simple model are 24.7% and 1.8% for cell 3680 (7,

9) and 4032 (10, 10), respectively; they are further reduced

to 17.7% and 1.1%, respectively, when ResNet-50 is utilized.

The minimum FPR in ResNet-50’s distribution is 1% for cell

2970 (1, 1), a 3× reduction from 3.2% when simple model

was utilized.

However, performance also degrades for some cells, as

evident in the right-hand heatmaps (indicated with negative

values). For example, observe accuracy of cell 3440 (5, 3)

that worsened from 71.9% using simple model to 69.6%

using ResNet-50 model. Similarly, ResNet-50 model resulted

in higher FPR of 28.8% for cell 3087 (2, 1), a significant

increase as compared with 17.5% when simple model is used.

Based on the above observations, the individual cell’s

performance can either be ameliorated or degraded by us-

ing ResNet-50 model; however, the overall performance of

ResNet-50 model improves as compared with its counterpart,

as evident in Table II. Also note the training time for ResNet-

50 model is about 7× higher than of the simple model.

To proof scalability of our proposed method, we scaled-up

the size of our grid-image from 10 × 10 × 5 to 15 × 15 × 5,

to include a total number of 225 grids. For this purpose, we

selected cell IDs starting from 5076 to 6728, depicted as inner

light-blue square grid in Fig. 2 (top-right), and kept rest of the

parameters of each model same as before. Table III conveys the

overall test performance and training time of both models, and
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TABLE II
COMPARISON OF OVERALL TEST PERFORMANCE AND TRAINING TIME OF

THE TWO MODELS FOR ANOMALY DETECTION

Metric Simple CNN
Model

ResNet-50
Model Improvement

Accuracy 78.99% 81.06% 2.07%
Error Rate 21% 18.94% 2.06%
Precision 69.99% 73.59% 3.6%
Recall 64.59% 67.21% 2.62%
FPR 13.81% 12.03% 1.78%
F1 67.18% 70.26% 3.08%
Training Time 3.52 min 25.58 min -

TABLE III
COMPARISON OF OVERALL TEST PERFORMANCE AND TRAINING TIME OF

THE TWO MODELS FOR ANOMALY DETECTION WHEN 15× 15× 5
DIMENSION GRID-IMAGE IS UTILIZED

Metric Simple CNN
Model

ResNet-50
Model Improvement

Accuracy 78.21% 80.4% 2.19%
Error Rate 21.78% 19.59% 2.19%
Precision 64.42% 72.5% 8.08%
Recall 61.9% 56.34% -
FPR 14.74% 9.21% 5.53%
F1 63.13% 63.41% 0.28%
Training Time 3.88 min 26.34 min -

the improvements achieved by leveraging ResNet-50 model

over simple CNN model. Fig. 6 demonstrates performance

(accuracy and FPR) distributions of both models for each of

the chosen cell IDs in the form of top and middle 15 × 15
heatmaps. The bottom heatmaps represent the improvements.

Similar to our observations of Fig. 5, we can also observe

in Fig. 6 that the performance of some cells has improved

and for some cells, it has deteriorated by applying ResNet-50

model. We can also observe that the overall accuracy and error

rate values in Table III resemble their counterparts in Table

II. Additionally, similar to the trend we previously observed

in Table II, ResNet-50 model in our current experiments has

also achieved better performance results as compared with the

simple CNN model except for the recall. Hence, our proposed

method is scalable.

If we compare Table III with Table II, it is interesting

to observe that overall training time do not proportionally

increase as we increase the resolution of input image. Hence,

the resolution can be enhanced to accommodate anomaly

detection for a larger number of cells with the expense of

slightly higher computation time. This is because of the two

properties of CNN discussed in Sec. IV-B—which enable the

number of parameters in a layer of CNN to remain constant

even if the input’s resolution is varied.

Finally, we compare our model’s performance with the

performance of feed-forward DNN proposed in Hussain et al.

[21]. Hence for comparison, we adopt their feed-forward DNN

model with the same hyper-parameter values and implement

it on the 100 cells depicted in Fig. 2 (red grid). Due to the

space constraint, we only show the test accuracy distribution in

Fig. 7, which can be compared with our simple CNN model’s

accuracy distribution in Fig. 5. In addition, comparison of

overall test accuracy and training time of our simple CNN and

ResNet-50 models with feed forward DNN model is shown in

Fig. 8. Although we can find some instances of cells having

feed forward DNN outperformed other models in Fig. 7, but

overall the DNN model performed poorly. As evident in Fig. 8,

DNN yielded worst overall test accuracy as well as training

time as compared with both of our models.

VI. CONCLUSION AND INSIGHTS FOR FUTURE WORK

We found our AI-powered mobile edge computing (MEC)-

based anomaly detection framework (installed in an edge

server (ES), co-located with a base station) can efficiently

detect anomalous cell(s) in a 100-cell region with 70% - 96%

accuracy, depending on an individual cell’s characteristics. Our

method is computationally light as compared with state-of-

the-art solution [16]: it eases computational load on the core

network (CN) by leveraging MEC approach and convolutional

neural network (CNN)—that we found to be efficient in

terms of utilizing fewer parameters than feed-forward deep

neural network (DNN), as explained and demonstrated in

Sec. IV-A. We further investigated two CNN models: sim-

ple model (inspired from the traditional CNN models) and

ResNet-50 model (adopted from a recent paper on residual

learning [30]). We found the latter yielded superior overall

performance than the formal but consumes a significantly large

training time—creating a trade off between training time and

performance.

Since our framework is designed to detect anomalies within

minutes—the conventional techniques involve subscriber com-

plaints and drive tests that consume hours and sometimes

days to detect the anomaly (cell outage) [34]—this potentially

improves QoS and truncates OPEX as timely identification of

anomalous cell means quicker problem resolution. Detection

of surged traffic activity in a region can also act as an

early-warning towards potential congestion that might choke

the network. This enhances user quality of experience as

timely identification of such situation will help avoid user

dissatisfaction. The addition of Internet activity feature that

was missing in most of the previous studies [9], [23], makes

our framework robust as it can detect situation such as musical

concert that might have slightly increased SMS/call activities

considered as normal but escalated Internet traffic (as people

frequently use social media to share their moments).

In the current (hardware and parametric) settings, the simple

CNN model seems more appropriate for online learning envi-

ronment as it can detect anomalies within the arrival of next

timestamp (10-min) unless we utilize more advanced hardware

for timely anomaly detection using ResNet-50 model. Perhaps,

with a more powerful quantum processing hardware [35] in

near-future, the emerging and future cellular networks can

even train much deeper and advanced neural network models

(ResNet-152 [30], Inception-v4 [31], etc.), faster and within

lesser time for more enhanced performance. Another limitation

to our research’s practical implementation is the requirement

of ground-truth labels that can be overcome by assigning

labels with the help of fault data having archived alarms’

logs [5]. Selecting optimum hyperparameters values can also

ameliorate performance. Hyperparameter tuning is essentially

an optimization loop that reruns the machine learning model

with various configurations of hyperparameter values in a
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Fig. 6. Performance distributions for 15× 15× 5 grid-image as an input.

Fig. 7. Feed-forward DNN model’s accuracy distribution.

search space (having ranges for all the hyperparameters) to

yield minimum error. This can be done manually by relying

on humans having domain knowledge or as mentioned above,

it can be a grid search having a discretized hyperparameter

search space. However, this is a computationally expensive

process. In this connection, random search algorithm [36] is

comparatively more efficient and can be utilized in our future

work.

(a) (b)

Fig. 8. Performance compassion of our simple CNN and ResNet-50 models
with feed-forward DNN model proposed in [21]. Purple bars indicate best
result among all.

For the practical settings, since we can categorize the

cellular network with our proposed MEC-based approach as

an MEC system with heterogeneous servers, the decision to

choose the number of cells monitored by an edge server

can depend on multifaceted reasons which mainly concerns

resource management [20, Sec. III. C.]. For example, deter-
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mining whether to offload computation to an ES or if the core

network has sufficient computation power at a given instance

to perform all the calculations (server selection problem [20,

Sec. III. C.], [37]); for the case where the computations

are offloaded to an ES, determining how much calculations

an ES can handle and then performing pre-processing and

subsequently allocating number of cells accordingly; etc.

We speculate our framework can also conform to the cloud

radio access network (C-RAN) architecture, where there are

massive number (hundreds or even thousands) of remote radio

heads (RRHs) controlled by a centralized, collaborative and

cloud-based baseband unit (BBU) pool [38]. In our research

context, a BBU pool can act as an ES monitoring user activities

pertaining to several RRHs; however, this direction needs

further investigation. In industrial Internet of things, our work

can also be extended to address anomaly (fault due to device

malfunction, connectivity failures, delayed communication,

etc.) detection in which a middleware (fog) connected with

various entities (actuators, robots, machines, sensors, etc.)

monitors their data to report anomalies [39]–[41]. Fog com-

puting is utilized in the industry for local computing to address

delay and security concerns, and a fog node can perform tasks

similar to the ones performed by the ES in our research.

In conclusion, the paper presents a robust, scalable, and

novel framework based on MEC, powered by deep CNN

(computationally efficient than feed-forward DNN utilized in

the latest research) and fueled by real CDR (spatio-temporal)

dataset to detect anomalies (pertaining to cell outage and

performance degradations, and surged cellular traffic activity

leading to a potential congestion) in a 100-cell sub-grid;

relieving CN from tremendous computational load of doing

data analytics for each cell in the network.
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