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Abstract

Background: The inability to test at scale has become humanity’s Achille’s heel in the ongoing war against the

COVID-19 pandemic. A scalable screening tool would be a game changer. Building on the prior work on cough-

based diagnosis of respiratory diseases, we propose, develop and test an Artificial Intelligence (AI)-powered screening

solution for COVID-19 infection that is deployable via a smartphone app. The app, named AI4COVID-19 records

and sends three 3-second cough sounds to an AI engine running in the cloud, and returns a result within two minutes.

Methods: Cough is a symptom of over thirty non-COVID-19 related medical conditions. This makes the diagnosis

of a COVID-19 infection by cough alone an extremely challenging multidisciplinary problem. We address this problem

by investigating the distinctness of pathomorphological alterations in the respiratory system induced by COVID-19

infection when compared to other respiratory infections. To overcome the COVID-19 cough training data shortage we

exploit transfer learning. To reduce the misdiagnosis risk stemming from the complex dimensionality of the problem,

we leverage a multi-pronged mediator centered risk-averse AI architecture.

Results: Results show AI4COVID-19 can distinguish among COVID-19 coughs and several types of non-COVID-

19 coughs. The accuracy is promising enough to encourage a large-scale collection of labeled cough data to gauge

the generalization capability of AI4COVID-19. AI4COVID-19 is not a clinical grade testing tool. Instead, it offers

a screening tool deployable anytime, anywhere, by anyone. It can also be a clinical decision assistance tool used to

channel clinical-testing and treatment to those who need it the most, thereby saving more lives.

Index Terms
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I. INTRODUCTION

By April 28, 2020, there were 3,024,059 confirmed cases of coronavirus disease 2019 (COVID-19), leading to

208,112 deaths and disrupting life in 213 countries and territories around the world [1]. The losses are compounding

everyday. Given no vaccination or cure exists as of now, minimizing the spread by timely testing the population

and isolating the infected people is the only effective defense against the unprecedentedly contagious COVID-19.

However, the ability to deploy this defense strategy at this stage of pandemic hinges on a nation’s ability to timely

test significant fractions of its population including those who are not contacting medical system yet. The capability

for agile, scalable and proactive testing has emerged as the key differentiator in some nations’ ability to cope and

reverse the curve of the pandemic, and the lack of the same is the root cause of historic losses for others.

A. Why might not clinic visit based COVID-19 testing mechanisms alone sufficiently control the pandemic at this

stage?

The “Trace, Test and Treat” strategy succeeded in flattening the pandemic curve (e.g., in South Korea, China and

Singapore) in its early stages. However, in many parts of the world the pandemic has already spread to an extent

that this strategy is not proving effective anymore [2]. Recent studies show that it is virus often transmitted when

an undiagnosed population coughs, that contributes to its much rapid and covert spread [3]. Data shows that 81%

of COVID-19 carriers do not develop severe enough symptoms for them to seek medical help, and yet they act

as active spreaders [4]. Others develop symptoms severe enough to prompt medical intervention only after several

days of being infected. These findings call for a new strategy centered on “Pre-screen/test proactively at population

scale, self-isolate those tested positive for self-healing without further spreading and channel medical care towards

the most vulnerable”.

As per World Health Organization (WHO) guidance, Nucleic Acid Amplification Tests (NAAT) such as real-time

Reverse Transcription Polymerase Chain Reaction (rRT-PCR) should be used for routine confirmation of COVID-19

cases by detecting unique sequences of virus ribonucleic acid (RNA). This test method, while being the current

gold standard, is not an adequate way to control the pandemic for reasons that include but are not limited to:

1) The limited availability of testing due to geographical and temporal factors.

2) The scarcity and expense of clinical tests needed to cover the massive time-sensitive demand.

3) The requirement of in-person visits to a hospital, clinic, lab or mobile lab. Such visits expose more members

of the public to COVID-19. This is not a trivial problem given the recent studies that show how highly stable and

hence contagious COVID-19 appears to be. For example, [5] shows that the aerosol stability of COVID-19 is up

to three hours in aerosols and up to seven days on different surfaces.

4) The turnaround time for current tests is several days, recently stretching to 10 days in some countries as labs

are becoming overwhelmed [6], [7]. By the time a patient is diagnosed using current methods, the virus has already

been passed to many.
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5) The in-person testing methods put the medical staff, particularly those with limited protection, at serious risk

of infection. The inability to protect our medics can lead to further shortage of medical care and increased distress

on the already stressed medical staff.

To make tests more readily accessible, on March 28th the United States Food and Drug Administration (FDA)

approved a faster test that can yield results in 15 minutes [8]. The test works similar to Polymerase Chain Reaction

(PCR) by identifying a portion of the COVID-19 RNA in the nasopharyngeal or oropharyngeal swab. The FDA

also recently approved another rapid molecular-based test, which delivers positive results in as little as five minutes

and negative results in 13 minutes [9]. However, the FDA warns that there is a high probability of false negative

results using this test [10]. While a leap forward, this test still requires an office visit and thus the breaching of

social distancing and self-isolation. Though much faster, the newly approved test still does not solve many of the

aforementioned problems. Furthermore, emerging reports of shortages of critical equipment used to collect patient

specimens, like masks and swabs, could blunt its impact on controlling the pandemic [11], [12]. In order to protect

others from potential exposure, the FDA has also approved at-home sample collection [13]. However, once a patient

collects a nasal sample, they need to put it in a saline solution and ship it overnight to a certified lab authorized

to run specific tests on the kit. Hence, this approach also introduces delays and could compromise on the quality

of samples if the sample is stored for too long. In addition, it could also introduce the chances of errors while

collecting the sample, since the patients collect the sample themselves, rather than trained doctors or healthcare

professionals.

More recently, two alternative approaches for COVID-19 infection diagnosis leveraging analysis of either X-

ray [14]–[26] or CT Scan [27]–[33] images have been proposed in the literature. These techniques, either through

an examination by a radiologist, or when combined with AI-based image processing, are able to diagnose COVID-

19 with even higher accuracies, and in some cases even better than the rRT-PCR based test. Recent studies report

a pooled sensitivity of 94% (95% confidence interval: 91%-96%), but a low specificity of 37% (95% confidence

interval 26%-50%) for CT-based diagnosis [34]. Therefore, CT based diagnosis may help to overcome the sub-

optimal sensitivity of PCR tests [35]. However, while both of these approaches reduce the burden on radiologists

to perform the diagnosis, they still require a visit to a well-equipped clinical facility. As a result, these approaches

also inherit the issues of office visit based tests that are highlighted above.

It is mainly due to the inability to test large swaths of populations timely, safely and cost effectively and exactly

track the actual spread that even the richest nations on earth are finding it difficult to contain the pandemic.

B. Proposed cough based COVID-19 screening approach

The idea of using cough for possible preliminary diagnosis of COVID-19, and the need to investigate its feasibility

is motivated by the following key findings:

1) Prior studies have shown that cough from distinct respiratory syndromes have distinct latent features [36]–

[43]. These distinct features can be extracted by appropriate signal processing and mathematical transformations of

the cough sounds. The features can then be used to train a sophisticated AI engine for performing the preliminary
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diagnosis solely based on cough. Our in-depth analysis of the pathomorphological alternations caused by COVID-19

in the respiratory system (reported in Section II-A), shows that the alternations are distinct from those caused by

other common non-COVID-19 respiratory diseases. This finding is corroborated by the meta-analysis of several

recent independent studies (reported in Section II-A) that show that COVID-19 infects the respiratory system in a

distinct way. Therefore, it is logical to hypothesize that cough caused by COVID-19 is also likely to have distinct

latent features and the risk of these features overlapping with those associated with other respiratory infections is

low. These distinct latent features can be exploited to train a domain aware AI engine to differentiate COVID-19

cough from non-COVID-19 cough. Our experiments (Figure 1, Section II-B3) show that this is indeed possible.

2) Cough manifests as a symptom in the majority (e.g., 67.7% as per [44]) but not all COVID-19 carriers.

However, studies show that coughing is one of the key mechanisms for the social spreading of COVID-19 [3].

Droplets containing the virus emitted through cough landing on surfaces where the virus has been shown to survive

for long periods of time has been reported as the most prolific mechanism of spreading the COVID-19 [45]. Hence,

if a COVID-19 patient is not showing cough as a symptom, the patient is most likely not spreading as actively as

a coughing COVID-19 patient. In other words, cough-based testing, even if far from being as sensitive as clinical

testing, can actually directly help in reducing R0 [4].

3) Due to the ease of measurement, a temperature scan is currently the predominant screening method for COVID-

19, e.g., used at the airports. However, between cough and fever, the number of non-COVID-19 medical conditions

that can cause fever are much larger than the non-COVID-19 conditions that can cause cough. Our analysis shows

that cough contains COVID-19 specific features even if it is non-spontaneous, i.e., when the COVID-19 patient is

asked to cough. This means cough can be used as a pre-screening method by asking the subject to simulate cough.

C. Contributions and paper contents

The contributions and contents of this paper are outlined below:

1) We analyze the pathomorphological changes caused by COVID-19 in the respiratory system from the studies

examining X-rays and CT scans of alive COVID-19 patients. Our analysis also includes the autopsy report studies

of deceased patients. The purpose of this analysis is to apply first principle-based approach. The goal is to see if the

pathomorphological alterations caused by COVID-19 in the respiratory system (i.e., the part of body that produces

a cough sound) are different from those caused by other common bacterial or viral infections. This is to determine

if it is even theoretically possible for the COVID-19 cough to have any distinct latent features. The in-depth study

of pertinent pathomorphological alterations suggests that it is possible.

2) Building on the insights from first principle-based approach and our prior work [46], as well as several

other independent studies [36]–[43] that suggest distinct latent features in cough sounds can be used for successful

AI-based diagnosis of several respiratory diseases, we hypothesize that “Cough sound can be used at least for

preliminary diagnosis of the COVID-19 by performing differential analysis of its unique latent features relative to

other non-COVID-19 coughs. ”

3) Continuing the medical literature review, we further identify and shortlist the non-COVID-19 respiratory

syndromes that are relatively common and are known to cause similar-sounding cough as that of COVID-19 patients.
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The shortlist includes pertussis, bronchitis, influenza, asthma, pneumonia, bronchiolitis and croup.

4) Given that even the shortlist is too long to gather reliable data for this time sensitive project, we reduce the

size of our data gathering campaign to a manageable one by leveraging the findings from literature which show that

cough caused by the last five medical conditions in the shortlist above does have features unique to each condition.

Therefore, in the interest of time, we go on to focus on the differential analysis of COVID-19 cough, and coughs

associated with pertussis and bronchitis as these two conditions are not examined earlier.

5) We gather cough data of COVID-19, pertussis and bronchitis patients. Cough samples from COVID-19 patients

include both spontaneous cough (symptomatic) and non-spontaneous (i.e., when the patient is asked to cough). This

is to make the test applicable to those who may not be showing cough as a symptom yet but are already infected.

We also gather cough samples from otherwise healthy individuals with no known medical condition, hereafter

referred to as a normal cough. The normal cough is included in the analysis to see if it can be differentiated from

the simulated cough produced by the COVID-19 patients. Using these data, we test the hypothesis using a variety

of data analysis and pre-processing tools. Multiple alternative analysis approaches show that COVID-19 associated

cough does have certain distinct features, at least when compared to pertussis, bronchitis and a normal cough.

6) Building on the insights from medical domain knowledge and cough data analysis, we develop an AI engine

for preliminary diagnosis of COVID-19 from cough sounds. This engine runs on a cloud server with a front-end

programmed as a simple user-friendly mobile app called AI4COVID-19. The app listens to cough when prompted,

and then sends it to the AI engine wirelessly. The AI engine first runs a cough detection test to see if the recorded

sound is a cough or not a cough. In case the sound is not a cough, it commands the app to indicate so. The cough

detection part of the AI engine is designed to detect cough even in the presence of background noise. This is to

make the app a useful screening tool even at public places such as airports and crowded shopping malls. If a cough

is detected, it is passed on to the diagnosis part of the AI engine. After the AI engine completes the analysis, the

app renders the result with three possible outcomes:

• COVID-19 likely.

• COVID-19 not likely.

• Test inconclusive.

7) To make the results as reliable as possible with the limited data available at the moment, we propose and

implement a risk-averse architecture for the AI engine. It consists of three parallel classification solutions designed

independently by three teams. The classifiers’ outcomes are consolidated by an automated mediator. In the current

design, each classifier has veto power, i.e., if all three classifiers do not agree, the app returns ‘Test inconclusive’.

This architecture employs the "2nd opinion" practice in medicine and reduces the rate of misdiagnosis, compared

to stand alone classifiers with binary diagnosis, albeit at a cost of an increased rate of returning ‘Test inconclusive’

result.
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Table I: Non-COVID-19 Medical Conditions that can cause Cough

RESPIRATORY NON-RESPIRATORY

Upper respiratory tract infection (mostly viral

infections)
Gastro-esophageal reflux

Lower respiratory tract infection (pneumonia,

bronchitis, bronchiolitis)

Drugs (angiotensin converting enzyme inhibitors;

beta blockers)

Upper airway cough syndrome Laryngopharyngeal reflux

Pertussis, parapertussis Somatic cough syndrome

Tuberculosis Vocal cord dysfunction

Asthma and allergies Obstructive sleep apnea

Early interstitial fibrosis, cystic fibrosis Tic cough

Chronic obstructive pulmonary disease

(emphysema, chronic bronchitis)
Smoking

Postnasal drip Foreign body

Croup Mediastinal tumor

Laryngitis Air pollutants

Tracheitis Tracheo-esophageal fistula

Lung abscess Left-ventricular failure

Lung tumor Congestive heart failure

Pleural diseases Psychogenic cough

Interstitial lung disease Idiopathic cough

II. METHODOLOGY

A. Hypothesis Formulation and the Devising a Manageable Validation Strategy Guided by Relevant Clinical Find-

ings

Our hypothesis in question is: “Cough sounds of COVID-19 patients contain unique enough latent features to

be used as a diagnosis medium”. In this section, we describe our first principle-based approach that established the

theoretical possibility of our hypothesis to be true. Then we describe the deep domain knowledge-based approach

we take to reduce the amount of data required to test this hypothesis, thereby making this project feasible in a

constrained time.

1) Is COVID-19 cough unique enough to yield AI-based diagnosis?: Unfortunately, cough is a very common

symptom of over a dozen medical conditions caused by either bacterial or viral respiratory infections not related to

COVID-19 [47]–[49]. Several non-respiratory conditions can also cause cough. Table I summarizes the non-COVID-

19 medical conditions which are known to cause cough. Theoretically, a cough based COVID-19 diagnosis, therefore,

must take into account the cough sound data associated with all of the conditions listed in Table I.

Trained physicians have been using cough sounds to perform a differential diagnosis among several respiratory
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conditions such as pneumonia, asthma, COPD, laryngitis and Tracheitis [49]–[54]. This is possible because in all

these diseases the nature and location of the underlying irritant in the respiratory system is quite different leading

to audibly distinct cough sounds. However, an unaided human ear is not capable of differentiating coughs caused

by the conditions listed in Table I. Even with AI, in case there are no unique latent features in the cough sound

of COVID-19 patients, there is a risk for a cough-based AI diagnosis tool to confuse the cough caused by any of

the diseases identified in Table I with the cough caused by COVID-19. A brute force-based approach to evaluate

this risk would require gathering cough data from a large number of patients for each of the conditions listed in

Table I. This deluge of data can be then used to train a powerful AI engine, such as very deep neural network

to see if it can differentiate COVID-19 cough from those caused by all of the other medical conditions listed in

Table I. This approach is not practical at the moment given that the gathering such all-encompassing data will take

too much time, rendering this approach of no help for the current pandemic.

To ensure that our developed solution works in practice with useful accuracy while being trainable with timely

available data, we take another approach that we call domain-aware AI-design. Domain-aware here refers to the fact

that the proposed AI engine does not solely rely on blind big data churning, e.g., through a deep neural network.

Instead it relies on the deep domain knowledge of medical researchers trained in respiratory and infectious diseases

to assess and narrow down the hypothesis testing scope, and to minimize the amount of data needed to test our

hypothesis. By deep domain knowledge of medical researchers, we mean the use of medical knowledge of medical

experts in this field to analyze pathomorphological changes caused by COVID-19 in the respiratory system and

thus to evaluate the feasibility of an AI-based approach using cough-based analysis. It also means identifying the

location of irritant in different types of coughs and using that information for smart feature extraction and faster

training.

To this end, the medical researchers in our team began with an in-depth analysis of the pathomorphological

changes caused by COVID-19 in the respiratory system by examining the data reported in numerous recent X-rays

and CT-scans based studies of COVID-19 patients. The goal here is to see if the pathomorphological alterations

caused by COVID-19 are distinct from that of other common medical conditions, particularly the ones identified in

Table I, that are well known to cause cough. If this turns out to be the case, then in cough caused by COVID-19

we should have latent features distinct from the cough caused by the other medical conditions. An appropriately

designed AI should then be able to pick these cough feature idiosyncratic to COVID-19 infection and yield a reliable

diagnosis, given enough labeled data. In the case of no such differences at pathomorphological level, the idea of

cough based COVID-19 diagnosis should be dropped. In that case, any AI-based diagnosis yielded from cough is

more likely to be a frivolous correlation and not a meaningful causal relationship. Such AI-based diagnosis will

be an artifact of the training data rather than unique latent features of COVID-19 caused cough. Such a domain

oblivious solution irrespective of its performance in lab will not be useful in practice.

2) Distinct pathomorphological alternations in respiratory system caused by COVID-19: In a recent study, it

has been discovered that in COVID-19 infected people, there are distinct early pulmonary pathological signs even

before the onset of the symptoms of COVID-19, such as dry cough, fever and some difficulty in breathing [55].

Early histological changes include evident alveolar damage with alveolar edema and proteinaceous exudates in
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alveolar spaces, with granules; inflammatory clusters with fibrinoid material and multinucleated giant cells; vascular

congestion. Reactive alveolar epithelial hyperplasia and fibroblastic proliferation (fibroblast plugs) were indicative

of early organization.

Contrary to the above observation of no early symptoms, it has also been noted that in some patients, COVID-19

leads to onset of pneumonia and pneumonia is marked by a peculiar cough [44]. However, pneumonia can also be

caused by many other factors including non-COVID-19 viral or bacterial infections. Therefore, the question arises:

is there a difference between COVID-19 caused pneumonia and other types of pneumonia that can be expected to

translate into a difference in associated cough’s latent features? Recent study in [56] shows that compared to non-

COVID-19 related pneumonia, COVID-19 related pneumonia on chest CT scan was more likely to have a peripheral

distribution (80% vs. 57%), ground-glass opacity (91% vs. 68%), vascular thickening (59% vs. 22%), reverse halo

sign (11% vs. 9%) and less likely to have a central+peripheral distribution (14% vs. 35%), air bronchogram (14%

vs. 23%), pleural thickening (15% vs. 33%), pleural effusion (4% vs. 39%) and lymphadenopathy (2.7% vs. 10.2%).

Hence, these findings clearly suggest that cough sound signatures with COVID-19 caused pneumonia are likely to

have some idiosyncrasies stemming from the distinct underlying pathomorphological alterations.

Moreover, CT scan-based studies also show that in the early stage of COVID-19 disease, it mainly manifests as

an inflammatory infiltration restricted to the subpleural or peribronchovascular regions of one lung or both lungs,

exhibiting patchy or segmental pure ground-glass opacities (GGOs) with vascular dilation. There is an increasing

range of pure GGOs and the involvement of multiple lobes of the lung, consolidation of lesions, and crazy-paving

patterns during the progressive stage. There are diffuse exudative lesions and lung "white-out" during an advanced

stage [57]. Furthermore, AI-based analyses of X-ray [14]–[17] and CT scan [27], [28] of the respiratory system

have also shown to exploit the differences in pathomorphological alternations caused by COVID-19 to perform

differential diagnosis among bacterial infection, non-COVID-19 viral infection and COVID-19 viral infection, with

good accuracy. This further implies that COVID-19 affects the respiratory system in a fairly distinct way compared

to other respiratory infections. Therefore, it is logical to hypothesize and investigate that the sound waves of cough

produced by the COVID-19 infected respiratory system may also have distinct latent features.

The feasibility of diagnosing several common respiratory diseases using cough is not only supported by prior

studies [58]–[60] but also in a recent clinically validated and widely publicized study [61]. In [61], a large team of

researchers showed that cough alone can be used to diagnose asthma, pneumonia, bronchiolitis, croup and lower

respiratory tract infections with over 80% sensitivity and specificity.

Recently, many machine learning teams around the world have started working on the idea of using cough sound

for possible diagnosis of COVID-19, some interdependently and others inspired by our preliminary results in [46]

and pre-print version of this work1. However, to the best of authors’ knowledge, this is the first work to propose

and evaluate the feasibility of this idea, and develop and test the prototype of an AI engine powered mobile app

based solution for anytime, anywhere tele-testing and pre-screening for COVID-19.

1https://arxiv.org/pdf/2004.01275.pdf

https://arxiv.org/pdf/2004.01275.pdf
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B. Data Description and Practical Viability of the Solution with Available Data

As mentioned earlier, ideally cough data associated with all diseases listed in Table I is desirable for such a

project. However, gathering such mammoth data is not possible in this time-constrained project, as the COVID-

19 pandemic needs rapid response. To achieve meaningful results in the constrained time, we leverage domain

knowledge, instead of just seeking big data. From Table I, using the insights from Section II-A, we shortlist cough

causing infections that are most likely to confuse our AI engine due to similar pathomorphological changes in the

respiratory system as of COVID-19 and, hence, similar cough signatures. The shortlist includes pertussis, bronchitis,

asthma, pneumonia, bronchiolitis, croup and influenza. We further note that the prior study [61] has shown that

cough associated with all of these seven medical conditions, except pertussis and bronchitis, have unique latent

features. We use findings from this earlier study to reduce the scope of our data gathering campaign and differential

analysis to only the respiratory diseases, the cough for which has not been analyzed before for having unique

features, i.e., pertussis and bronchitis.

1) Data used for training cough detector: In order to make AI4COVID-19 app employable in a public place or

where various background noises may exist (e.g., airport), we design and include a cough detector in our AI-Engine.

This cough detector acts as a filter before the diagnosis engine and is capable to distinguish cough sound from 50

types of common environmental noises. To train and test this detector, we use the ESC-50 dataset [62] and the cough

and non-cough sounds recorded from our own smartphone app. The ESC-50 dataset is a publicly available dataset

that provides a huge collection of human and environmental sounds. This collection of sounds is categorized into

50 classes, one of these being cough sounds. We have used 1838 cough sounds and 3597 non-cough environmental

sounds for training and testing of our cough detection system.

2) Data used for training COVID-19 diagnosis engine: To train our cough diagnosis system, we collected cough

samples from COVID-19 patients as well as pertussis and bronchitis patients. We also collected normal coughs,

i.e., cough sounds from healthy people. At the time of writing, we had access to 96 bronchitis, 130 pertussis, 70

COVID-19, and 247 normal cough samples from different people, to train and test our diagnosis system. Obviously,

these are very small numbers of samples and more data is needed to make the solution more generalizable. New

COVID-19 cough samples are arriving daily, and we are using these unseen samples to test the trained algorithm.

3) Data pre-processing and visualization to evaluate the practical feasibility of AI4COVID-19: In Section II-A,

by applying medical domain knowledge, we analyzed the theoretical viability of our hypothesis. However, in AI-

based solutions, theoretical viability does not guarantee practical viability as the end outcome depends on the

quantity and quality of the data, in addition to the sophistication of the machine learning algorithm used. Therefore,

here we use the available cough data from the four classes, i.e., bronchitis, pertussis, COVID-19 and normal, to

first evaluate the practical feasibility of a cough based COVID-19 diagnosis solution.

All audio files used in our study are in uncompressed PCM 16-bit format with a sampling rate of 44.1 kHz and

a fixed 3-second length. We convert the cough audio samples for all four classes into the Mel scale for further

processing. The Mel scale is a pitch categorization where listeners judge changes in pitch to be equal in distance

from one another along this scale. It is meant to make changes in frequency, such as with a spectrogram, more

closely reflect audible changes. We used the Mel spectrogram over a typical frequency spectrogram because the
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Mel scale in the Mel spectrogram has unequal spacing in the frequency bands and provides a higher resolution

(more informative) in lower frequencies and vice versa, as compared to equally spaced frequency bands in normal

spectrogram [63]. Since cough sounds are known to have more energy in lower frequencies therefore, the Mel

spectrogram is a naturally suitable representation for cough sounds. There are several methods for converting the

frequency scale to the Mel. Here, we convert frequency f into Mel scale m as:

m = 2595× log10

(
1 +

f

700

)
(1)

We perform Cepstral analysis on the Mel spectrum of audio cough samples to compute their Cepstral coefficients,

commonly known as Mel Frequency Cepstral Coefficients (MFCC) [64]. The extracted MFCC features for every

sample result in an M×N matrix, where each column represents one signal frame and each row represents extracted

MFCC features for a specific frame. The number of frames N can vary from sample to sample. There are several

possible ways to use these extracted features for classification. In our approach, we extract two M × 1 MFCC

based feature vectors for each input cough sample and concatenate them into a single final 2M × 1 feature vector

for that sample. For the first feature vector, we take the mean of MFCC features corresponding to all the frames.

For the second feature vector, we take the top P M × 1 Principle Component Analysis (PCA) projections [65] of

the MFCC features across all the frames and combine them into a single M × 1 vector by taking their magnitude.

Finally, we concatenate both feature vectors into a single 2M ×1 feature vector. This approach is further illustrated

in Figure 5 in Section II-C3.

Since the features extracted from cough audio are multi-dimensional, in order to visualize the features, a nonlinear

dimensionality reduction technique, t-distributed Stochastic Neighbor Embedding (t-SNE) [66] is applied, as it is

well-suited for embedding high-dimensional data in a low-dimensional space of two-dimensions. In particular, this

technique models each high-dimensional object by a two-dimensional point such that similar objects are modeled

by nearby points and dissimilar objects are modeled by distant points with high probability. This visualization

allows us to interpret the features in the form of clusters or classes with classification decision boundaries. Figure 1

illustrates the 2-D visualization of these features for the four classes through t-SNE with classification decision

boundaries/contours. It can be observed from the figure that different cough types possess features distinct from each

other, and the features for COVID-19 are different from other cough types, such as bronchitis and pertussis. Hence,

this observation suggests the practical viability of AI-powered cough based preliminary diagnosis for COVID-19

encouraging us to proceed towards an AI-engine design for maximum accuracy and efficient implementation to

enable app-based deployment.

C. The AI4COVID-19 AI-Engine

In this section we explain the system architecture and the details of a two-stage solution that we developed for:

1) detection of cough sound from mixed cough, non-cough and noisy sounds; and 2) diagnosis of COVID-19 from

the cough sound.

The training data is used to train different variants of deep learning and one classical machine learning algorithm

as described in this section. After these models are trained, the pre-trained models for both cough detection and
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Figure 1: Visualization of features for the four classes via t-SNE (gray triangles correspond to normal, blue circles correspond to bronchitis, black stars correspond

to pertussis and orange diamonds represent COVID-19 cough.

Cough
detector

Mediator

Positive

Negative

Inconclusive

Yes

No

Cough not detected

COVID-19 likely

Test inconclusive

COVID-19 not likely

DTL-MC

CML-MC

DTL-BC

COVID-19 diagnosis

AI4COVID-19 app
displayed output results 

Cough collection and detection COVID-19 diagnosis

Figure 2: Proposed system architecture and flow diagram of AI4COVID-19, showing snapshot of Smartphone App at user front-end and back-end cloud AI-engine

blocks consisting of Cough Detector block (further elaborated in Figure 4 and Section II-C2) and COVID-19 diagnosis block containing Deep Transfer Learning-based

Multi-Class classifier (DTL-MC), Classical Machine Learning-based Multi-Class classifier (CML-MC) and Deep Transfer Learning-based Binary-Class classifier

(DTL-BC) (further elaborated in Figure 5 and Section II-C3).

COVID-19 diagnosis are then implemented at the cloud server. The app then provides a user interface for using

these pre-trained models. Another advantage of cloud-based implementation is the possibility of refining the model

continuously as more data becomes available, as no update in the app is required for the refinement in the back-end

AI-based diagnosis engine.

1) System architecture: The overall system architecture is illustrated in Figure 2 and a flow chart highlighting

the complete steps is shown in Figure 3. The smartphone app records sound/cough when prompted by the press and

release button. The recorded sounds are forwarded to the server when the diagnosis button is pressed. At the server,

the sounds are first fed into the cough detector. In case, the sound is not detected as cough, the server commands

the app to prompt so. In case, the sound is detected as a cough, the sound is forwarded to three parallel, different

classifier systems, i.e., Deep Transfer Learning-based Multi Class classifier (DTL-MC), Classical Machine Learning-

based Multi Class classifier (CML-MC) and Deep Transfer Learning-based Binary Class classifier (DTL-BC). The

results of all these three classifiers are then passed on to a mediator. The app reports a diagnosis only if all three

classifiers return identical classification results. If the classifiers do not agree, the app returns ‘test inconclusive’.
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Figure 3: A flow chart highlighting the steps of the proposed system.
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Figure 4: Cough detection classifier.

This tri-pronged mediator centered architecture is designed to minimize the probability of misdiagnosis. With this

architecture, results show that AI4COVID-19 engine predicting ‘COVID-19 likely’ when the subject is not suffering

from COVID-19 or vice-versa is extremely low when validated on the testing data available at the time of writing.

The multi-pronged architecture is inspired by the "second opinion" practice in health care. The added caution here

is that the three (diagnosis) opinions are solicited, each with veto power. How this architecture manages to reduce

the overall misdiagnosis rate of the AI4COVID-19 despite the relatively higher misdiagnoses rate of individual

classifiers is further explained in Section III-C through (4) and (5).

For app implementation in real-time, to ensure stricter quality control, we plan to run these pre-trained algorithms

on at least three cough samples from the same patient and then make a preliminary diagnosis based on majority

voting. Also, the cough detector, implemented before COVID-19 diagnosis (see Figure 2 and Figure 3) is ensuring

some quality control by passing only those cough samples to the COVID-19 diagnosis engine that are of satisfactory

quality. If samples are of poor quality, for example, a lot of background noise or the sound is too low, it rejects

those samples by not detecting them as cough and therefore, not passing them on for diagnosis. In this case, the

user is prompted to re-record the cough sample.

The details of detection and diagnosis classifiers are presented below.
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2) Cough detection: The recorded cough sample is forwarded to our cloud-based server where the cough detector

engine first computes its Mel-spectrogram (as explained in Section II-B3) with 128 Mel-components (bands). This

image is then resized and converted into grayscale to unify the intensity scaling and reduce the image dimensions,

resulting in a 320 × 240 × 1 dimensional image. The resultant image is then fed into our Convolutional Neural

Network (CNN) based classifier to decide whether the recorded input sound is of cough or not.

An overview of our used CNN structure is shown in Figure 4. As the input Mel spectrogram image is of high

dimensions, it’s first passed through a 2 × 2 max-pooling layer to reduce the overall model complexity before

proceeding. This is followed by two blocks of layers, each block comprising two convolutional layers followed by

a 2× 2 max pooling layer and a 0.15 dropout. Convolutional layers in first block use 16 filters and a 5× 5 kernel

size, whereas the second block uses 32 filters each in both convolutional layers. The learned complex features from

these 4 convolutional layers are flattened and then passed to a fully connected layer of 256 neurons followed by a

0.30 dropout layer to prevent overfitting. Finally, the output layer with 2 neurons and a softmax activation function

is used to classify between cough and not cough for the given input. ReLU is used as the activation function for all

convolutional layers in this model, while Adam [67] is used as the optimizer due to its relatively better efficiency

and flexibility. A binary cross entropy loss function completes the detection model.

3) COVID-19 diagnosis: When the input sound is detected to be cough by the cough detection engine, it is

forwarded to our tri-pronged mediator-centered AI engine to diagnose between COVID-19 and non-COVID-19

coughs. In order to produce results with maximum reliability, with the limited data available at the moment, the

three classifiers used in the system use different approaches and are designed independently by three teams and

cross-validated [68].

The three classification approaches are described below.

a) Deep Transfer Learning-based Multi Class classifier (DTL-MC): The first solution leverages a CNN-based

four class classifier, using Mel spectrograms (described above) as input. The four classes here are cough caused by

1) COVID-19, 2) pertussis, 3) bronchitis or 4) normal person with no known respiratory infection. Similar CNN

architecture used for cough detection is used here with a slight modification to make it a four class classifier (instead

of binary classifier previously) by changing the number of neurons in output layer to four neurons for classifying

the input between four possible output classes. Deep transfer learning [69] is used here to transfer the knowledge

(features) learned by cough detection model (trained using relatively more data) to the similar diagnosis model.

This allowed us to train a deep architecture (see Figure 4) using limited amount of training data, as the basic

features of the input Mel-spectrogram characterizing cough are already learned and only fine-tuning is required to

learn more subtle features using new disease data. In this DTL-MC model, we froze the initial weights of the first

convolutional layer, as the initial layers learn low-level latent features, and only allowed other layers to fine-tune

their weights. This transfer learning approach allowed us to get better performance (reported in Section III) than

training on disease data from scratch.

b) Classical Machine Learning-based Multi Class classifier (CML-MC): A second parallel diagnosis test uses

classic machine learning instead of deep learning. This to mitigate the over-fitting that may still be happening in the

deep learning-based classifier due to small amount of training data. To maximize independence among the classifiers
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Figure 5: Classical Machine Learning-based Multi-Class classifier (CML-MC).

Figure 6: Normalized mean confusion matrix for cough detection (in percentage) using 5-fold cross validation.

that together constitute the AI diagnosis engine, the 2nd classifier begins with a different pre-processing of cough

sounds. Instead of using a spectrogram like the first classifier, it uses MFCC and PCA based feature extraction as

explained in Section II-B3. These smart features are then fed into a multi-class support vector machine (SVM) for

classification. Class balance is achieved by sampling from each class randomly such that the number of samples

equals to the number of minority class samples, i.e., class with the lowest number of samples. Using the concatenated

feature matrix (of mean MFCC and top few PCAs) as input, we perform SVM with k-fold validation for 100,000

iterations. This approach is illustrated in Figure 5.

c) Deep Transfer Learning-based Binary Class classifier (DTL-BC): The third parallel diagnosis test also uses

deep transfer learning based CNN on the Mel spectrogram image of the input cough samples, similar to the first

branch of the AI engine, but performs only binary classification of the same input, i.e., is the cough associated

COVID-19 or not. The CNN structure used for this technique is similar to the one used for the cough detector (see

Figure 4).

III. RESULTS

In order to evaluate the model we use the performance metrics of accuracy, specificity, sensitivity/recall, precision,

F1-score on validation set and also cross-validate the models. The accuracy here refers to the overall accuracy of

Table II: Performance Metrics for Cough Detection

F1-Score

(%)

Sensitivity

(%)

Specificity

(%)

Precision

(%)

Accuracy

(%)

95.61 96.01 95.19 95.22 95.60
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Figure 7: Mean model loss for 5-fold cross validation of cough detector.

the model. We use k-fold cross validation methodology, that is well-suited to evaluate the performance of machine

learning models on limited data [68]. These performance metrics are based on mean confusion matrices from cross-

validation. In addition, we have used regularization techniques to prevent the problem of over-fitting, for example,

we tune the regularization parameter of SVM against the cross-validation accuracy and choose those parameters that

gave us the best generalizability of the models. Tuning of the various hyper-parameters (number of hidden layers,

learning rate, activation functions, dropout rate) of deep neural network-based models has also been performed,

based on the cross-validation accuracy. Furthermore, the decay of model loss versus the number of epochs has been

investigated to rule out the possibility of over-fitting.

A. Cough detection

The confusion matrix and performance metrics for detection algorithm are reported in Figure 6 and Table II,

respectively. Results demonstrate that our cough detection algorithm can classify between cough event and no cough

event with an overall accuracy of 95.60%.

The error graph of mean loss versus epochs of this neural network based model, for both training and validation

data sets is shown in Figure 7. The decay of both the training and testing curve shows that this model has not been

over-fitted.

B. COVID-19 diagnosis

The performance metrics for the first classifier, that is DTL-MC classifier are reported in Table III. At the moment,

with limited data available, the overall accuracy of deep transfer learning based multi-class classifier is 92.64%. The

mean normalized confusion matrix resulting from this approach is shown in Figure 8. Future work will continue to

improve this model as more training data becomes available for CNN. Figure 9 shows the mean loss versus epochs

of the DTL-MC classifier, for both training and validation data sets. Both the curves start to saturate after around

25 epochs, indicating a reasonable learning time, without over-fitting.
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Figure 8: Normalized mean confusion matrix for cough diagnosis (in percentage) for DTL-MC using 5-fold cross validation.
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Figure 9: Mean model loss for 5-fold cross validation of DTL-MC.

For the second classifier, i.e., CML-MC classifier, the normalized mean confusion using 5-fold cross validation

is shown in Figure 10 and the CDF of overall accuracy with varying k’s in k-fold cross validation is shown in

Figure 11. Table IV reports the performance metrics for this approach, utilizing data available at this moment.

Results indicate an overall accuracy of 88.76%.

Performance metrics for the third approach, that is DTL-BC are reported in Table V, with the normalized mean

Table III: Performance Metrics for DTL-MC

F1-Score

(%)

Sensitivity

(%)

Specificity

(%)

Precision

(%)

Accuracy

(%)

Overall - - - - 92.64

COVID-19 89.52 89.14 96.67 89.91 -

Pertussis 94.04 93.57 98.19 94.51 -

Bronchitis 91.63 93.86 96.33 89.50 -

Normal 95.43 94.00 99.00 96.90 -
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Figure 10: Normalized mean confusion matrix for cough diagnosis (in percentage) for CML-MC using 5-fold cross validation.

Table IV: Performance Metrics for CML-MC

F1-Score

(%)

Sensitivity

(%)

Specificity

(%)

Precision

(%)

Accuracy

(%)

Overall - - - - 88.76

COVID-19 89.08 91.71 95.27 86.60 -

Pertussis 88.84 87.64 96.78 90.08 -

Bronchitis 90.94 91.29 96.84 90.61 -

Normal 86.09 84.40 96.11 87.86 -
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Figure 11: Overall accuracy CDF for varying k-fold experiments in CML-MC approach.

Table V: Performance Metrics for DTL-BC

F1-Score

(%)

Sensitivity

(%)

Specificity

(%)

Precision

(%)

Accuracy

(%)

92.97 94.57 91.14 91.43 92.85
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Figure 12: Normalized mean confusion matrix for cough diagnosis (in percentage) for DTL-BC using 5-fold cross validation.
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Figure 13: Mean model loss for 5-fold cross validation of DTL-BC.

confusion matrix shown in Figure 12. The classification accuracy with this approach is 92.85%. The loss versus

number of epochs for both training and validation is illustrated in Figure 13. Here, both the curves start to level off

after 20 epochs, hence depicting a reasonable training time, while avoiding over-fitting. Currently, the number of

non-COVID cough samples are much larger than COVID-19 cough samples when binary classification is chosen.

Once more data becomes available, the current classification accuracy using DTL-BC is likely to increase.

The performance of the two deep learning-based classifiers (DTL-MC and DTL-BC) is superior than the manual

feature extraction based classic machine learning classifier (CML-MC). This is expected, because with shortage

of training data circumvented via transfer learning, considerable amount of training data and automatic feature

extraction capability of the deep neural network are expected to extract even more subtle distinct features hidden

in the data than the manual feature extraction used in the second classifier, i.e., CML-MC.

C. Overall performance under independence assumption

After analyzing the performance of the three different classifiers, we now analyze the overall performance of

AI4COVID-19 AI engine that utilizes a mediator-based architecture. This architecture will yield optimal performance

when its prongs (i.e., the classifiers) are fully independent.
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The independence of the three classifiers depends on dependence among the training data fed into these classifiers,

as well as the similarity among the classifier’s internal architectures. Therefore, in reality, the classifiers will never

be truly independent, because of following key reasons: (i) Even if we use unique training data for each classifier,

there will be some dependence (e.g., correlation introduced by age group, gender, native language etc). (ii) Even

if we manage to choose fully independent training data for each classifier, the similarities in the architectures of

classifiers would introduce some degree of dependence.

However, lacking absolute independence does not completely eliminate the advantages of proposed multi-pronged

architecture. This is similar to a scenario when a second diagnosis sought from a physician, who has the same

speciality, reads same medical literature, and has correlated neuroanatomy as the first physician, is considered an

independent opinion for all practical purposes and is known to reduce misdiagnosis rates, though in strict theoretical

sense it is not fully independent diagnosis.

Acknowledging that the three classifiers are not fully independent but they will become almost independent by

using unique training data when more COVID-19 cough data becomes available, in the following, we analyze the

performance of overall AI architecture under the independence assumption. This is to compare the misdiagnosis

rate of individual classifier decisions versus the mediator’s decision.

Let k1, k2, k3 be the predicted class labels for the three classifiers, DTL-MC, CML-MC and DTL-BC, respectively

and kf be the predicted diagnosis result of the app. The possible values that kf can take are ‘COVID-19 likely’

(C), ‘COVID-19 not likely’ (C ′) and ‘test inconclusive’ (I). Then, the probability that the app predicts ‘COVID-19

likely’, when the patient actually has COVID-19, can be calculated as:

P (kf = C|C) = P (k1 = C|C) · P (k2 = C|C) · P (k3 = C|C)

= 0.891 · 0.917 · 0.946 = 0.773 (2)

The probability that the app predicts ‘COVID not likely’ when the subject actually does not have COVID-19 can

be represented as:

P (kf = C ′|C ′) = P (k1 = C ′|C ′) · P (k2 = C ′|C ′) · P (k3 = C ′|C ′)

= 0.966 · 0.952 · 0.911 = 0.838 (3)

The app can also predict ‘COVID-19 likely’ when the subject is not suffering from COVID-19 or vice-versa. In

these cases, we can write the probabilities as:

P (kf = C|C ′) = P (k1 = C|C ′) · P (k2 = C|C ′) · P (k3 = C|C ′)

= 0.033 · 0.047 · 0.088 = 1.365× 10−4 (4)
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P (kf = C ′|C) = P (k1 = C ′|C) · P (k2 = C ′|C) · P (k3 = C ′|C)

= 0.108 · 0.082 · 0.054 = 4.782× 10−4 (5)

Equations (4) and (5) signify the importance of the mediator in our proposed architecture and show how this risk-

averse architecture is able to reduce the overall misdiagnosis rate of AI4COVID-19. From (4) and (5), both the false

negative as well as the false positive rate of the overall architecture are near zero. Note that none of the classifiers

have near zero misdiagnosis rate simultaneously for both healthy and COVID-19 cases. For a given classifier low

False Positive Rate (FPR) is at the cost of high False Negative Rate (FNR) and vice versa. Mediator counters the

over sensitivity or under sensitivity of the individual classifiers by masking it with the ‘Test inconclusive’ result.

i.e., from (4), the lowest false positive rate of DTL-MC classifier is the most contributing factor in the near-zero

probability the app will predict ‘COVID-19 likely’ when the subject is not suffering from COVID-19. The most

contributing factor in the near-zero probability that the app will predict ‘COVID-19 not likely’ when the subject

is actually suffering from COVID-19, is the lowest false negative rate of DTL-BC classifier, as observed from

(5). In other words, the mediator in AI4COVID-19 architecture complements the weakness of one classifier with

the strength of other and vice versa, resulting in reduced misdiagnosis rate as compared to using these classifiers

independently, i.e., without the proposed mediator.

In the cases where the reports ‘Test inconclusive’, the test subject can either have COVID-19 or not, in reality.

The respective probabilities for those cases are:

P (kf = I|C) = 1− [P (kf = C|C) + P (kf = C ′|C)]

1− [0.773 + 4.782× 10−4] = 0.226 (6)

P (kf = I|C ′) = 1− [P (kf = C|C ′) + P (kf = C ′|C ′)]

1− [1.365× 10−4 + 0.838] = 0.161 (7)

Currently, the app would predict an inconclusive test result 38.7% of the time (P (kf = I) = P (kf = I|C) +

P (kf = I|C ′)). This percentage can be reduced by switching to a mediation scheme where app result reflects simple

or weighted majority of the N number of classifiers. This scheme will be explored once more data becomes available.

The results are summarized in Table VI. The numbers here just indicate how including the proposed mediator-based

architecture may reduce the misdiagnosis rate compared to using individual classifiers. These probabilities are under

independence assumption and can change depending on the degree of dependence between the training data and

architectures of the individual classifiers, as explained earlier. We can capture this dependency factor by introducing

a co-efficient, di in each of the above six calculated probabilities, where i = 1 . . . 6. The values of di’s can be

estimated empirically once more data becomes available in the future and can in turn be used to determine the

weights to be assigned to each classifier in weighted average based mediator design.
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Table VI: The Overall Current Performance of AI4COVID-19 AI Engine

Event Probability

App reports ‘COVID-19 likely’ when the subject actually has COVID-19 0.773d1

App reports ‘COVID-19 likely’ when the subject actually does not have COVID-19 1.365× 10−4 d2

App reports ‘COVID-19 not likely’ when the subject actually does not have COVID-19 0.838d3

App reports ‘COVID-19 not likely’ when the subject actually has COVID-19 4.782× 10−4 d4

App reports ‘test inconclusive’ when the subject actually has COVID-19 0.226d5

App reports ‘test inconclusive’ when the subject actually does not have COVID-19 0.161d6

IV. DISCUSSION

A. Potential Utilities of the AI4COVID-19

The AI4COVID-19 app based on preliminary diagnosis is not meant to replace or compete with the medical

grade testing by any means. Instead, the proposed solution offers the following complementing use cases to control

the pandemic.

1) Enabling tele-screening for anyone, anywhere, anytime.

2) Addressing the shortage of testing facilities. This is particularly useful in remote areas of the world where

medics have no option but to rely on phone based or questioner based tele-screening. In such places, the app can

act as a clinical decision assistance tool.

3) Opportunity to protect medics from unnecessary exposure, particularly for non-critical patients where the

medical advice for whom anyway would be “stay at home” or “self-isolate” to wait for self-healing.

4) Minimizing covert spread that happens to be the biggest problem .

5) Tracing and monitoring the spread. This is particularly easy with AI4COVID-19 as the cough samples can

be spatio-temporally tagged anonymously, without having to compromise the patient’s privacy.

6) AI4COVID-19 can be used as a low cost screening tool, instead of or in addition to the temperature scanner

at the airports, borders or elsewhere as needed. This is possible because our tests show that the app can diagnose

COVID-19 even in a non-spontaneous cough of COVID-19 positive people. The cost of using such an app-based

solution would be significantly low, since it can be readily installed on any existing smartphone using the existing

internet connections, by a large number of people simultaneously.

7) The app can help in enabling and maintaining informed social distancing and self-isolation.

8) By default the app can provide centralized record of tests with spatial and temporal stamps. Thus, the data

gathered from the app can be used for long term planning of medical care and policy making.

B. Comparison and contrast of AI4COVID-19 with existing studies

Existing methods to screen COVID-19 patients include Nucleic Acid Amplification Tests (NAAT), such as real-

time Reverse Transcription Polymerase Chain Reaction (rRT-PCR). While far more sensitive than proposed method,

these methods are marked by limitations identified in Section I-A that includes limited geographical and temporal
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availability, high cost, large turnaround time, requirement of in-person visits to hospitals or mobile labs and the

need and shortage of protective equipment. In contrast, AI4COVID-19 is useable anywhere, anytime for anyone.

Recent AI-based studies towards COVID-19 preliminary diagnosis include the use of either X-ray [14]–[17] or

CT Scan [27]–[29]. These methods demonstrate comparable or higher sensitivities, ranging from 72% to 96%,

compared to proposed approach. However, both of these approaches still require a visit to a well-equipped clinical

facilities and does not meet the utilities identified in Section IV-A. In contrast, AI4COVID-19 is the only screening

method proposed in the literature so far that can be used in-situ and eliminates the need for an in-person visit to

the testing facility or getting out of homes or places of self-isolation, thereby meeting all use cases identified in

Section IV-A.

C. Key Limitations of Current Version of AI4COVID-19

At the time of writing, the performance of AI4COVID-19 app is limited by the following factors:

1) The quantity of the training and testing data. Due to time constraints and difficulty of getting cough data,

we could gather data only from a small number of patients for each of the four groups. We tried to minimize the

impact of this limitation by combining data hungry approaches that are capable of extracting more hidden features

i.e., deep learning, with the ML approaches that can work with a small amount of data through manual feature

extraction. The shortage of training data was also to some extent circumvented by using transfer learning in the

deep learning based classifiers. Still, the need for more data cannot be overemphasized.

2) The quality of the training and testing data: We have strived to ensure that the data is correctly labeled.

However, any error in the labeling of the data that managed to slip through our scrutiny is likely to impact reported

performance. Such impact can be particularly pronounced when the data is not that big in the first place.

3) Our in-depth medical differential analysis suggested that COVID-19 associated pathomorphological alter-

nations are fairly distinct, and hence cough of COVID-19 patients is likely to have at least some distinct latent

features. However, this does not guarantee the absence of overlap in COVID-19 cough features and those of diseases

not included in the training and testing. The approach we used to combat this issue is the clever mediator-based

architecture that practically eliminates misdiagnosis by declaring test to be inconclusive if the cough samples are

even slightly confusing i.e., lying very close to decision boundaries. Still, we are working to address this limitation

in future releases of AI4COVID-19 by incorporating cough associated with other non-COVID-19 medical conditions

identified in Table I as well as including other dimensions such as age, gender, smoking or non-smoking status and

certain bio markers.

4) Large scale trial-based validation to test the generalization capability: In the end, the only way to evaluate the

generalization capability and practical performance of the proposed AI4COVID-19 based testing is a large scale

medically supervised validation in real world. The findings of this paper provide promising enough preliminary

results and proof of concept to encourage first systematic large-scale cough data gathering campaigns followed by

large scale trials. Once the testing of the prototype app on a much larger data set is completed, the provision of

automatic updates will also be enabled.
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5) In the current prototype design, all AI processing happens at the cloud. The app is just a thin client that

records and sends the audio data to the server where the AI engine resides. Due to low complexity, the app does

not have stringent CPU and RAM requirements and it can run on most smartphones. This cloud-based design allows

the screening to be done not only via commodity smartphones but also via a web portal link accessible in any

browser. In the future, to enable offline screening using an edge device such as smart phone, we plan to investigate

edge-based implementation of the modified lightweight version of the proposed AI-engine. This will be done by

edge AI techniques such as distilled deep leering. The potential of distilled deep learning for enabling edge device

based medical diagnoses has been verified in our recent work [70].

D. Planned Future upgrades of AI4COVID-19

AI4COVID-19 accuracy can be improved by incorporating other acoustic data such as breathing sound and speech.

Moreover, for higher accuracy and better generalization across larger populations, we also plan to investigate the

impact of incorporating meta-data such as age, gender, smoking, non-smoking, ethnicity and medical history. The

accuracy is also likely to improve by including multi-sensory data instead of relying on only acoustic data and

meta-data. For example, recent studies show that in a small fraction of COVID-19 patients, cutaneous anomalies

are part of the symptoms [71]. Therefore, including skin images in addition to acoustic data may help improve

the diagnosis. Another planned upgrade is the inclusion of bio-markers that can be measured by wearable sensors

such as wristbands, rings and skin patches or ambient sensors such as infrared cameras or wireless sensors, which

can also lead to more reliable results. The examples of bio-markers that are worthy of investigation that can be

easily collected via aforementioned wearable or ambient sensors include respiration rate, temperature, blood oxygen

saturation, pulse rate, heart rate variability, resting heart rate, blood pressure, mean arterial pressure, stroke volume,

sweat level, systematic vesicular resistance, cardiac output, pulse pressure and cardiac index.

V. CONCLUSION

Scarcity, cost and long turnaround time of clinical testing are key factors behind covert rapid spread of the COVID-

19 pandemic. Motivated by the urgent need, this paper presents a ubiquitously deployable AI-based preliminary

diagnosis tool for COVID-19 using cough sound via a mobile app. The core idea of the tool is inspired by our

independent prior studies that show cough can be used as a test medium for diagnosis of a variety of respiratory

diseases using AI. To see if this idea is extendable to COVID-19, we perform in-depth differential analysis of the

pathomorphological alternations caused by COVID-19 relative to other cough causing medical conditions. We note

that the way COVID-19 affects the respiratory system is substantially unique and hence, cough associated with it

is likely to have unique latent features as well. We validate the idea further by the visualization of latent features

in cough of COVID-19 patients and two common infections, pertussis and bronchitis as well as non-infectious

coughs. Building on the insights from the medical domain knowledge, we propose and develop a tri-pronged

mediator centered AI-engine for the cough-based diagnosis of COVID-19, named AI4COVID-19. The results show

that the AI4COVID-19 app is able to diagnose COVID-19 with negligible misdiagnosis probability thanks to its

risk-avert architecture.
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Despite its impressive performance, AI4COVID-19 is not meant to compete with clinical testing. Instead, it offers

a unique functional tool for timely, cost-effective and most importantly safe monitoring, tracing, tracking and thus,

controlling the rampant spread of the global pandemic by virtually enabling testing for everyone. While we are

working on improving the AI4COVID-19, this paper is meant to present a proof of concept to encourage community

support for more labeled data followed by large scale trials. We hope that the AI4COVID-19 app can be leveraged

to pre-screen for COVID-19 at a population scale, particularly in regions around the world where the pandemic is

spreading covertly due to the lack of testing. The AI4COVID-19 enabled tele-screening can alleviate the crushing

burden on the overwhelmed medical systems around the world and help save countless lives.

ACKNOWLEDGMENT

This work is dedicated to those affected by the COVID-19 pandemic and those who are helping to fight this

battle in anyway they can.

REFERENCES

[1] World Health Organization. (2020) Coronavirus disease (COVID-19) outbreak situation. Accessed on: April 28, 2020. [Online]. Available:

https://www.who.int/emergencies/diseases/novel-coronavirus-2019

[2] BBC. (2020) Coronavirus in South Korea: How ‘trace, test and treat’ may be saving lives. Accessed on: Mar. 31, 2020. [Online].

Available: https://www.bbc.com/news/world-asia-51836898

[3] Science. (2020) Not wearing masks to protect against coronavirus is a ‘big mistake,’ top Chinese scientist says. Accessed on: April.

1, 2020. [Online]. Available: https://www.sciencemag.org/news/2020/03/not-wearing-masks-protect-against-coronavirus-big-mistake-top-

chinese-scientist-says

[4] M. Cascella, M. Rajnik, A. Cuomo, S. C. Dulebohn, and R. Di Napoli, “Features, evaluation and treatment coronavirus (COVID-19),” in

StatPearls [Internet]. StatPearls Publishing, 2020.

[5] N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg,

S. I. Gerber et al., “Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1,” New England Journal of Medicine,

2020.

[6] Tribune. (2020) Coronavirus test results in Texas are taking up to 10 days. Accessed on: Mar. 31, 2020. [Online]. Available: https://

tylerpaper.com/covid-19/coronavirus-test-results-in-texas-are-taking-up-to-10-days/article_5ad6c9cc-4fa9-573a-bb4d-ada1b97acf42.html

[7] Washington Post. (2020) Hospitals are overwhelmed because of the coronavirus. Accessed on: Mar. 31, 2020. [Online]. Available:

https://www.washingtonpost.com/opinions/2020/03/15/hospitals-are-overwhelmed-because-coronavirus-heres-how-help/

[8] CNN. (2020) FDA authorizes 15-minute coronavirus test. Accessed on: Mar. 31, 2020. [Online]. Available: https://www.cnn.com/2020/

03/27/us/15-minute-coronavirus-test/index.html

[9] Abott. (2020) Detect COVID-19 in as little as 5 minutes. Accessed on: May. 30, 2020. [Online]. Available: https:

//www.abbott.com/corpnewsroom/product-and-innovation/detect-covid-19-in-as-little-as-5-minutes.html

[10] STAT. (2020) FDA says Abbott’s 5-minute COVID-19 test may miss infected patients . Accessed on: May 30, 2020. [Online]. Available:

https://www.statnews.com/2020/05/15/fda-says-abbotts-5-minute-covid-19-test-may-miss-infected-patients/

[11] The New York Times. (2020) The Latest Obstacle to Getting Tested? A Shortage of Swabs and Face Masks. Accessed on: Mar. 31,

2020. [Online]. Available: https://www.nytimes.com/2020/03/18/health/coronavirus-test-shortages-face-masks-swabs.html

[12] Washington Post. (2020) Shortages of face masks, swabs and basic supplies pose a new challenge to coronavirus testing. Accessed

on: Mar. 31, 2020. [Online]. Available: https://www.washingtonpost.com/climate-environment/2020/03/18/shortages-face-masks-cotton-

swabs-basic-supplies-pose-new-challenge-coronavirus-testing/

[13] FDA. (2020) Coronavirus (COVID-19) Update: FDA Authorizes First Diagnostic Test Using At-Home Collection of Saliva Specimens

. Accessed on: May 30, 2020. [Online]. Available: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-

fda-authorizes-first-diagnostic-test-using-home-collection-saliva

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.bbc.com/news/world-asia-51836898
https://www.sciencemag.org/news/2020/03/not-wearing-masks-protect-against-coronavirus-big-mistake-top-chinese-scientist-says
https://www.sciencemag.org/news/2020/03/not-wearing-masks-protect-against-coronavirus-big-mistake-top-chinese-scientist-says
https://tylerpaper.com/covid-19/coronavirus-test-results-in-texas-are-taking-up-to-10-days/article_5ad6c9cc-4fa9-573a-bb4d-ada1b97acf42.html
https://tylerpaper.com/covid-19/coronavirus-test-results-in-texas-are-taking-up-to-10-days/article_5ad6c9cc-4fa9-573a-bb4d-ada1b97acf42.html
https://www.washingtonpost.com/opinions/2020/03/15/hospitals-are-overwhelmed-because-coronavirus-heres-how-help/
https://www.cnn.com/2020/03/27/us/15-minute-coronavirus-test/index.html
https://www.cnn.com/2020/03/27/us/15-minute-coronavirus-test/index.html
https://www.abbott.com/corpnewsroom/product-and-innovation/detect-covid-19-in-as-little-as-5-minutes.html
https://www.abbott.com/corpnewsroom/product-and-innovation/detect-covid-19-in-as-little-as-5-minutes.html
https://www.statnews.com/2020/05/15/fda-says-abbotts-5-minute-covid-19-test-may-miss-infected-patients/
https://www.nytimes.com/2020/03/18/health/coronavirus-test-shortages-face-masks-swabs.html
https://www.washingtonpost.com/climate-environment/2020/03/18/shortages-face-masks-cotton-swabs-basic-supplies-pose-new-challenge-coronavirus-testing/
https://www.washingtonpost.com/climate-environment/2020/03/18/shortages-face-masks-cotton-swabs-basic-supplies-pose-new-challenge-coronavirus-testing/
https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-diagnostic-test-using-home-collection-saliva
https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-diagnostic-test-using-home-collection-saliva


25

[14] L. Wang and A. Wong, “COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from

Chest Radiography Images,” arXiv preprint arXiv:2003.09871v1, 2020.

[15] I. Zhang, Y. Xie, Y. Li, C. Shen, and Y. Xia, “COVID-19 Screening on Chest X-ray Images Using Deep Learning based Anomaly

Detection,” arXiv preprint arXiv:2003.12338, 2020.

[16] A. Narin, C. Kaya, and Z. Pamuk, “Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional

Neural Networks,” arXiv preprint arXiv:2003.10849, 2020.

[17] E. E.-D. Hemdan, M. A. Shouman, and M. E. Karar, “COVIDX-Net: A framework of deep learning classifiers to diagnose COVID-19 in

x-ray images,” arXiv preprint arXiv:2003.11055, 2020.

[18] G. Deshpande and B. Schuller, “An Overview on Audio, Signal, Speech, & Language Processing for COVID-19,” arXiv preprint

arXiv:2005.08579, 2020.

[19] H. Y. F. Wong, H. Y. S. Lam, A. H.-T. Fong, S. T. Leung, T. W.-Y. Chin, C. S. Y. Lo, M. M.-S. Lui, J. C. Y. Lee, K. W.-H. Chiu, T. Chung

et al., “Frequency and distribution of chest radiographic findings in COVID-19 positive patients,” Radiology, p. 201160, 2020.

[20] I. D. Apostolopoulos and T. A. Mpesiana, “COVID-19: automatic detection from x-ray images utilizing transfer learning with convolutional

neural networks,” Physical and Engineering Sciences in Medicine, p. 1, 2020.

[21] P. Afshar, S. Heidarian, F. Naderkhani, A. Oikonomou, K. N. Plataniotis, and A. Mohammadi, “COVID-CAPS: A capsule network-based

framework for identification of COVID-19 cases from X-ray images,” arXiv preprint arXiv:2004.02696, 2020.

[22] Q.-V. Pham, D. C. Nguyen, W.-J. Hwang, P. N. Pathirana et al., “Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19)

Pandemic: A Survey on the State-of-the-Arts,” 2020.

[23] X. Li, C. Li, and D. Zhu, “COVID-MobileXpert: On-Device COVID-19 Screening using Snapshots of Chest X-Ray,” https://arxiv.

org/pdf/2004.03042 v2. pdf, 2020.

[24] N. Tsiknakis, E. Trivizakis, E. E. Vassalou, G. Z. Papadakis, D. A. Spandidos, A. Tsatsakis, J. Sánchez-García, R. López-González,

N. Papanikolaou, A. H. Karantanas et al., “Interpretable artificial intelligence framework for COVID-19 screening on chest X-rays,”

Experimental and Therapeutic Medicine.

[25] K. Ahammed, M. S. Satu, M. Z. Abedin, M. A. Rahaman, and S. M. S. Islam, “Early Detection of Coronavirus Cases Using Chest X-ray

Images Employing Machine Learning and Deep Learning Approaches,” medRxiv, 2020.

[26] S. Albahli, “Efficient GAN-based Chest Radiographs (CXR) augmentation to diagnose coronavirus disease pneumonia,” Int J Med Sci,

vol. 17, no. 10, pp. 1439–1448, 2020.

[27] X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, L. Yu, Y. Chen, J. Su, G. Lang et al., “Deep Learning System to Screen Coronavirus Disease

2019 Pneumonia,” arXiv preprint arXiv:2002.09334, 2020.

[28] L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song et al., “Artificial intelligence distinguishes COVID-19

from community acquired pneumonia on chest ct,” Radiology, p. 200905, 2020.

[29] W. Zhao, Z. Zhong, X. Xie, Q. Yu, and J. Liu, “Relation between chest ct findings and clinical conditions of coronavirus disease (COVID-19)

pneumonia: a multicenter study,” American Journal of Roentgenology, pp. 1–6, 2020.

[30] Z. Han, B. Wei, Y. Hong, T. Li, J. Cong, X. Zhu, H. Wei, and W. Zhang, “Accurate screening of covid-19 using attention based deep 3d

multiple instance learning,” IEEE Transactions on Medical Imaging, 2020.

[31] Y. Li and L. Xia, “Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management,” American Journal of

Roentgenology, vol. 214, no. 6, pp. 1280–1286, 2020.

[32] Z. Ye, Y. Zhang, Y. Wang, Z. Huang, and B. Song, “Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial

review,” European Radiology, pp. 1–9, 2020.

[33] L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song et al., “Artificial intelligence distinguishes COVID-19

from community acquired pneumonia on chest CT,” Radiology, p. 200905, 2020.

[34] H. J. Adams, T. C. Kwee, and R. M. Kwee, “COVID-19 and chest CT: do not put the sensitivity value in the isolation room and look

beyond the numbers.” Radiology, p. 201709, 2020.

[35] H. A. Gietema, N. Zelis, J. M. Nobel, L. J. Lambriks, L. B. van Alphen, A. M. O. Lashof, J. E. Wildberger, I. C. Nelissen, and P. M.

Stassen, “CT in relation to RT-PCR in diagnosing COVID-19 in the Netherlands: a prospective study,” medRxiv, 2020.

[36] W. Thorpe, M. Kurver, G. King, and C. Salome, “Acoustic analysis of cough,” in The IEEE Seventh Australian and New Zealand Intelligent

Information Systems Conference, 2001, pp. 391–394.

[37] H. Chatrzarrin, A. Arcelus, R. Goubran, and F. Knoefel, “Feature extraction for the differentiation of dry and wet cough sounds,” in IEEE

International Symposium on Medical Measurements and Applications, 2011, pp. 162–166.



26

[38] I. Song, “Diagnosis of Pneumonia from Sounds Collected using Low Cost Cell Phones,” in International Joint Conference on Neural

Networks (IJCNN), 2015, pp. 1–8.

[39] C. Infante, D. Chamberlain, R. Fletcher, Y. Thorat, and R. Kodgule, “Use of cough sounds for diagnosis and screening of pulmonary

disease,” in 2017 IEEE Global Humanitarian Technology Conference (GHTC), 2017.

[40] M. You, H. Wang, Z. Liu, C. Chen, J. Liu, X.-H. Xu, and Z.-M. Qiu, “Novel Feature Extraction Method for Cough Detection Using

NMF,” IET Signal Processing, vol. 11, no. 5, pp. 515–520, 2017.

[41] R. X. A. Pramono, S. A. Imtiaz, and E. Rodriguez-Villegas, “Automatic cough detection in acoustic signal using spectral features,” in

2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 7153–7156.

[42] I. D. Miranda, A. H. Diacon, and T. R. Niesler, “A comparative study of features for acoustic cough detection using deep architectures,”

in 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 2601–2605.
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